
The Journal of Symbolic Logic

Volume 84, Number 4, December 2019

A PARAMETRIC, RESOURCE-BOUNDED GENERALIZATION
OF LÖB’S THEOREM, AND A ROBUST COOPERATION CRITERION

FOR OPEN-SOURCE GAME THEORY

ANDREWCRITCH

Abstract. This article presents two theorems: (1) a generalization of Löb’s Theorem that applies
to formal proof systems operating with bounded computational resources, such as formal verification
software or theorem provers, and (2) a theorem on the robust cooperation of agents that employ proofs
about one another’s source code as unexploitable criteria for cooperation. The latter illustrates a capacity for
outperforming classical Nash equilibria and correlated equilibria, attaining mutually cooperative program
equilibrium in the Prisoner’sDilemmawhile remaining unexploitable, i.e., sometimes achieving the outcome
(Cooperate, Cooperate), and never receiving the outcome (Cooperate, Defect) as player 1.

§1. Introduction. In the game theoretic analysis of computerized agents who
may read one another’s source code, and more generally in the analysis of program
verification systems that use proofs to verify other program verification systems,
a need has arisen for a version of Löb’s Theorem that applies to proof systems
with bounded computational resources. The first main theorem of this article is a
generalization of Löb’s Theorem that applies in such cases, developed and proven
in Section 2 through Section 4.
The second main theorem, presented in Section 5, makes use of the first theo-
rem and some further proof-theoretic analysis to derive some implications for the
game theory of agents who read one another’s source code. Specifically, game the-
oretic work of Bárász, Christiano, Fallenstein et al. [1] and LaVictoire, Fallenstein,
Yudkowsky et al. [5] found that Löb’s Theorem can be used to design entities in
modal logic that resemble “agents” who achieve robust cooperative equilibria in
games such as the Prisoner’s Dilemma. However, these so-called “modal agents”
were defined as strings representing uncomputable functions; strings of the form
“if (· · ·) is provable, return 1, else return 0”. It remained open whether their results
would arise naturally for computable agents, a question answered affirmatively in
Section 5.

1.1. Related work. The work of Pudlák [7] on the lengths of proofs of finitistic
consistency statements are suggestive of the first theorem of this article. Specifically,

Received July 10, 2016.
2010 Mathematics Subject Classification. 03B70, 03B45, 03F03, 68T27, 91A35, 62C99, 91A05,

91A06, 91A10.
Key words and phrases. Löbian cooperation, bounded rationality, program equilibrium, proof length,

Prisoner’s Dilemma.

c© 2019, Association for Symbolic Logic
0022-4812/19/8404-0004
DOI:10.1017/jsl.2017.42

1368

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1369

Pudlák shows that, for a consistent system, there exists some ε > 0 such that for
all N , any proof of a statement of the form “there does not exist a proof of ⊥
using N or fewer characters” must use at least Nε characters. This means there is
some obstruction to self-trust for a resource-bounded proof system, which suggests
that a resource-bounded version of Löb’s Theorem—a generic statement of self-
trust about a family of sentences parametrized by a resource bound—might also
hold.

§2. Fundamentals. Since this article draws from work in several disciplines, this
section is provided to clarify the use of notation and conventions throughout.

2.1. Proof length conventions and notation. Proof length will be measured in
characters instead of lines, the way one might measure the size of a text file on a
computer. An extensive analysis of proof lengths measured in characters is covered
by [8].
Throughout this article, S refers to a fixed proof system (e.g., an extension of
Peano Arithmetic). Writing

S �
n
φ, or simply �

n
φ

means that there exists an S-proof of φ using n or fewer characters.

2.2. Proof system. Let S be any first-order proof system that

1) can represent computable functions (e.g., by being an extension of PA; see
Section 2.4),

2) can write any number k ∈ N using O(lg(k)) symbols (e.g., using binary), and
3) allows the definition and use of abbreviations during proofs (see the Appendix
for details).

Compact numeral representations and abbreviations are allowed in the proof
system for two reasons. The first is that real-world automated proof systems will
tend to use these because of memory constraints. The second is that abbreviations
make the lengths of shortest proofs slightly easier to analyze. For example, if a
number N with a very large number of digits occurs in the shortest proof of a
proposition, it will not occur multiple times; instead, it will occur only once, in the
definition of an abbreviation for it. Then, one does not need to carefully count the
number of times the numeral occurs in the proof to determine the contribution of
its size to the proof length; the contribution will simply be linear in its length, or
lg(N).
Write

LS for the language of S,
LS(r) for the set of formulas in LS with r free variables, and
Const(S) for the set of closed-form constant expressions in S (e.g., 0, S0,
S0 + S0, etc.).
When φ ∈ LS(r), given any closed-form expressions c1, . . . , cr (such as constants,
or free variables), write

φ[c̄] = φ[c1, . . . , cr]

for the result of substituting the ci for the free variables in φ.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1370 ANDREWCRITCH

2.3. Choosing aGödel encoding. Alongwith the proof systemS, a single encoding

#(−) : LS → N

is chosen and fixed throughout, as well as a “numeral” mapping
◦(−) : N → Const(S) ⊆ LS

for expressing naturals as constants in S. Note that in traditional PA, for example,
◦5 = SSSSS0. However, to be more realistic it is assumed that S uses a binary
encoding to be more efficient, so e.g., ◦5 = 101. The maps #(−) and ◦(−) combine
to form a Gödel encoding

�(−)� : LS → Const(S)
�φ� := ◦#φ

which allows S to write proofs about itself.

2.4. Representing computable functions. It is assumed that for any computable
function f : N → N, there exists a “graph” formula Γf ∈ LS(2) such that

for all x ∈ N, S � (∀y)
(
Γf [◦x, y]↔ y = ◦f(x)

)
.

For example, this condition holds if S is an extension of PA; see, e.g., Theorem 6.8
of Cori and Lascar ([3], Part II).
Sometimes we abuse notation and write symbols for computable functions in-line
with logical expressions to save space. For example, given functions f, g and h, to
say that S proves that for any x value, f(x) < g(x) + h(x), technically one should
write

� (∀x)(∀y1)(∀y1)(∀y3)
(
Γf [x, y1] and Γg [x, y2] and Γh [x, y3]→ y1 < y2 + y3

)

but instead, we abuse notation and write

� (∀x)(f(x) < g(x) + h(x)).
2.5. Asymptotic notation. The notation f ≺ g will mean that for anyM ∈ N,
there exists an N ∈ N such that for all n > N , Mf(n) < g(n). The expression
O(g) stands for the set of functions f
 g. If f : N → N is any specific function,
f(O(g)) will stand for the set of functions of the form e ◦ f where f ∈ O(g).

§3. A bounded provability predicate, �k . Here a predicate �k is defined for
asserting provability using a proof with length bounded by k.

3.1. Defining �k . Given a choice of Gödel encoding for Peano Arithmetic, it is
classical that a formula Bew[m, n] ∈ LS(2) exists that means, in natural language,
that the number m encodes a proof in PA, and that the number n encodes the
statement it proves. So, the standard provability operator � : LPA → LPA can be
defined as

�(φ) := (∃m)(Bew[m, �φ�]).
It is taken for granted thatBew[m, n] exists forS and can be extended to a “bounded
Bew” formula BBew[m, n, k] ∈ LS(3) that means

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1371

• m encodes a proof in S,
• n encodes the statement it proves, and
• the proof encoded by m, before being encoded as m, uses at most k characters
when written in the language of S. (Note that in general, m itself will be much
larger than k as a member of N.)

Then one can define a “bounded” box operator, which, given any sentence φ and
closed expression k (such as a free variable, or a constant), returns

�k(φ) := (∃m)(BBew[m, �φ� , k]).
Also taken for granted is a computable “single variable evaluation” function,Eval1 :
N → N, such that for any φ ∈ LS(1),

Eval1(�φ� , k) := �φ(◦k)� .
Since Eval1 is computable, it can be represented in LS as in Section 2.4. This
allows us to extend the�k operator to act on sentences with one unbound variable.
Specifically, if φ is a sentence with an unbound variable � , then

�k(φ) := (∃m)
(
BBew[m,Eval1(�φ� , �), k]).

Then �k(φ) itself has � as an unbound variable, and in natural language stands for
“There is a proof using k or fewer characters of the formula φ”.

3.2. Basic properties of �k . Each of the following properties will be needed
multiple times during the proof of the main results. Since the proof is already highly
symbolic, these properties are given English names to recall them.

Property 1 (Implication distribution). There is a constant c ∈ Const(S) such
that for any p, q ∈ LS ,

� (∀a)(∀b)(�a(p → q)→ (�b(p)→ �a+b+c(q))).

Proof sketch. The fact that one can combine a proof of an implication with the
proof of its antecedent to obtain a proof of its consequent can be proven in general,
with quantified variables in place of the Gödel numbers of the particular statements
involved. Let us suppose this general proof has length c0. Then, one needs only to
instantiate the statements in it to p and q. However, if p and q are long expressions,
it may be that they were abbreviated in the earlier proofs without lengthening them,
so they can be written in abbreviated form again during this step. Hence, the total
cost of combining the two proofs is around c = 2c0, which is constant with respect
to p and q.

Property 2 (Quantifier distribution). There is a constant C ∈ Const(S) such
that for any φ ∈ LS(1),

� �N ((∀k)(φ[k]))
⇒ � (∀k)(�C+2N+lg(k)(φ[k])

)
, which in turn

⇒ � (∀k)(�O(lg(k))(φ[k])
)
.

In the final subscript,O(lg(k)) stands for a closed expression representing a function
of k that is asymptotically less than some positive constant times O(lg(k)).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1372 ANDREWCRITCH

Proof. An encoded proof of φ[◦K] for a specific K can be obtained by specializ-
ing the conclusion of an N -character encoded proof of (∀k)(φ[k]) and appending
the specialization with ◦K in place of k at the end. To avoid repeating ◦K numerous
times in the final line (in case it is large), an abbreviation will be used for φ. Thus
the appended lines can read as follows:

(1) let Φ stand for �φ�,
(2) Φ[◦K].
Let us analyze howmany characters are needed to write such lines. First, a string Φ
is needed to use as an abbreviation for φ. Since no string of length N2 has yet been
used as an abbreviation in the earlier proof (otherwise one can shorten the proof
by not defining and using the abbreviation), one can achieve Length(Φ) < N

2 . As
well, some constant c number of characters are needed to write out the system’s
equivalent of “let”, “stand for”, “�”, and “�”. Finally, lg(K) characters are needed
to write ◦K . Altogether, the proof was extended by C +N + lg(k) characters, for
a total length of 2N + c + lg(k).

§4. A bounded generalization of Löb’s Theorem. This section exhibits the first
main theorem: a generalization of Löb’s Theorem applicable to the analysis of
resource-bounded proof systems.

Definition 4.1 (Proof expansion function). Let

e : N → N

be any computable function bounding the expansion of S-proof lengths when they
are Gödel encoded. That is, its definition is only that it must be large enough to
satisfy the following two properties:

Property 3 (Bounded Necessitation). For all φ ∈ LS ,
�
k
φ (4.1)

⇒ �
e(k)

�k(φ). (4.2)

Property 4 (Bounded Inner Necessitation). For any φ ∈ LS ,
� �k(φ)→ �e(k)(�k(φ)).

Then the following theorem holds:

Theorem 4.2 (Resource-bounded generalization of Löb’s Theorem). Let p[k] ∈
LS(1) be a formula with a single unquantified variable k, and suppose thatf : N → N

is computable and satisfies f(k) � e(O(lg(k))). Then there is a threshold k̂ ∈ N,
depending on p[k], such that

� (∀k)(�f(k)(p[k])→ p[k]
)

⇒ �
(
∀k > k̂

)
(p[k]).

Note: In fact a weaker statement,

� (∀k > k1)
(
�f(k)(p[k])→ p[k]

)
,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1373

is sufficient to derive the consequent, since we could just redefine f(k) to be 0 for
k ≤ k1 and then �f(k)(p[k]) → p[k] is vacuously true and provable for k ≤ k1 as
well.
The proof of Theorem 4.2 makes use of a version of Gödel’s diagonal lemma that
allows free variables to appear in the formula being diagonalized:
Proposition 4.3. SupposeS is a first-order theory capable of representing all com-
putable functions, as in Section 2.4. Then for any formulaG ∈ LS(r+1), there exists
a formula � ∈ LS(r) such that

�
(
∀k̄

)(
�[k̄]↔ G [��� , k̄]

)
,

where k̄ = (k1, . . . , kr) are free variables.
Proof. This result can be found on p. 53 of Boolos [2].

Proof of Theorem 4.2. (In this proof, each centered equation will follow directly
from the one above it unless otherwise noted.)
We begin by choosing some function g(k) such that lg(k) ≺ g(k) and e(g(k)) ≺
f(k). For example, we could take g(k) = �

√
(lg(k))(e−1(f(k)))�.Define a formula

G ∈ LS(2) by
G [n, k] :=

(
(∃m)(Bew[m,Eval1(n, k), g(k)])

) → p[k]
so that for any φ ∈ LS(1),

G [�φ� , k] = �g(k)(φ[k])→ p[k].
Now, by Proposition 4.3, there is some � ∈ LS(1) such that in some number of
characters n,

�
n
(∀k)(�[k]↔ G [��� , k]). (4.3)

By Bounded Necessitation,

� �n((∀k)(�[k]↔ G [��� , k])).
By Quantifier Distribution, since n is constant with respect to k,

� (∀k)(�O(lg(k))(�[k]↔ G [��� , k])
)
,

in which we can specialize to the forward implication,

� (∀k)(�O(lg(k))(�[k]→ G [��� , k])
)
.

By Implication Distribution of �O(lg(k)),

� (∀k)(∀a)(�a(�[k])→ �a+O(lg(k))(G [��� , k])
)
.

By Implication Distribution again, this time of �a+O(lg(k)) over the implication
G [��� , k] = �g(k)(φ[k])→ p[k], we obtain

� (∀k)(∀a)(∀b)(�a(�[k])→
(
�b

(
�g(k)(�[k])

) → �a+b+O(lg(k))(p[k])
))
.

Now we specialize this equation to a = g(k) and b = h(k), where h : N → N

is a computable function satisfying e(g(k)) ≺ h(k) ≺ f(k), for example, h(k) =
�
√
f(k)e(g(k))�:
� (∀k)(�g(k)�[k]→

(
�h(k)

(
�g(k)(�[k])

) → �g(k)+h(k)+O(lg(k))(p[k])
))
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1374 ANDREWCRITCH

Then since g(k) + h(k) +O(lg(k)) < f(k) after some bound k > k1, we have
� (∀k > k1)

(
�g(k)(�[k])→

(
�h(k)

(
�g(k)(�[k])

) → �f(k)(p[k])
))
.

Now, by hypothesis, � (∀k)
(
�f(k)(p[k])→ p[k]

)
, thus

� (∀k > k1)
(
�g(k)(�[k])→

(
�h(k)

(
�g(k)(�[k])

) → p[k])). (4.4)

Also, without any of the above, from Bounded Inner Necessitation we can write

� (∀k)(∀a)(�a(�[k])→ �e(a)(�a(�[k]))
)
.

From this, with a = g(k), we have

� (∀k)(�g(k)(�[k])→ �e(g(k))
(
�g(k)(�[k])

))
.

Now, since e(g(k)) < h(k) after some bound k > k2, we have

� (∀k > k2)
(
�g(k)(�[k])→ �h(k)

(
�g(k)(�[k])

))
. (4.5)

Next, from Equations 4.4 and 4.5, assuming we chose k2 ≥ k1 for convenience, we
have

� (∀k > k2)
(
�g(k)(�[k])→ p[k]

)
. (4.6)

But from Equation 4.3, the implication here is equivalent to �[k], so we have

�
N
(∀k > k2)(�[k]),

where N is the number of characters needed for the proof above. From this, by
Bounded Necessitation, we have

� �N ((∀k > k2)(�[k])).
By Quantifier Distribution of �N ,

� (∀k > k2)
(
�C+2N+lg(k)(�[k])

)

and since C + 2N + lg(k) < g(k) after some bound k > k̂, taking k̂ ≥ k2 for
convenience, we have

�
(
∀k > k̂

)(
�g(k)(�[k])

)
. (4.7)

Finally, from Equations 4.6 and 4.7 we have, as needed,

�
(
∀k > k̂

)
(p[k]).

4.1. Interpretation. Löb’s Theorem may be viewed as an obstacle to a formal
system of logic “trusting itself” to soundly prove any statement p. Previously, one
might have thought this obstacle was merely a quirk of infinities arising from the
unbounded proof-existence predicate �. However, we see now that some bounded
obstacle remains: namely, that a bounded logical system cannot trust itself “about
moderately long proofs in general.” To see this interpretation, let p[k] be any state-
mentwith a free parameterk, andf(k) � e(O(lg(k))) be any function, representing

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1375

“moderate largeness.” Then the hypothesis � (∀k)
(
�f(k)(p[k])→ p[k]

)
of Theo-

rem 4.2 says that our logical system generally trusts its proofs about p[k], even if
they are moderately long. However, this will imply that � ∀k > k̂, p[k], which is
bad news if p[k] is sometimes false.

4.2. Makingf(k) small. The statement of Theorem 4.2 becomes stronger as one
makes the functionf(k) smaller, but it must remain� e(O(lg(k))) for the theorem
to apply. The obstruction to making f(k) small is hence the size of the proof
expansion function e, which in real-world software for writing proofs about proofs
will be under some design pressure to be made small, to manage computational
resources.
How small can e bemade in practice? Gödel numberings for sequences of integers
can be achieved in O(n) space (Tsai, Chang, and Chen, [11]) (where n is the length
of a standard binary encoding of the sequence), as can Gödel numberings of term
algebras (Tarau, [9]). To check that one line is an application of Modus Ponens
from previous lines, if the proof encoding indexes the implication to which MP is
applied, is a test for string equality that is linear in the length the of lines. Finally,
to check that an abbreviation has been applied or expanded, if the proof encoding
indexes where the abbreviation occurs, is also a linear time test for string equality.
Thus, one can straightforwardly achieve e(k) ∈ O(k) for real-world theorem-
provers. In that case, the condition f(k) � e(O(lg(k))) amounts only to saying
that f(k) � lg(k).

§5. Robust cooperation of bounded proof-based agents in the Prisoner’s Dilemma.
Bárász, Christiano, Fallenstein et al. [1], LaVictoire, Fallenstein, Yudkowsky
et al. [5], and others have exhibited various agent-like logical formulae who can
be viewed as playing the Prisoner’s Dilemma by basing their “decisions” on proofs
about each others’ definitions (as strings). In particular, they proffer proof of the
opponent’s cooperation as an unexploitable condition for cooperation. However,
their “agents” are purely mathematical entities who decide whether to cooperate
based on undecidable logical conditions. This leaves open the question of whether
their results are achievable by real software with bounded computational resources.
So, consider the following program, whereG : N → N is a function to be specified
later:

def FairBot k(Opponent) :
let B = k + G(LengthOf(Opponent))

search for a proof of length at most B that

Opponent(FairBot k) = Cooperate

if found,
return Cooperate

else

return Defect

In this program, the subroutine “search for a proof of length atmostB that (· · ·)”
is defined as a process which searches, in lexicographic order, through all strings of
length≤B, checking each string for whether it is a proof of (· · ·). If any string turns

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1376 ANDREWCRITCH

up that is a proof of (· · ·), the search halts and sets found = true. If no such proof
exists, the search continues until the (finite) set of strings of length ≤B have been
exhausted, then halts and sets found = false. In what follows, all that matters is
the functional behavior of the proof search procedure: that it sets found = true if
a proof of length ≤B exists, and found = false otherwise.
The program FairBotk may be viewed as a kind of proof-based “agent” that
plays the Prisoner’s Dilemma in the following sense. Given any string, Opponent,
representing the source code of another program, we can compute the pair1

R(FairBotk,Opp) :=
(
FairBotk(Opp),Opp(FairBotk)) .

Viewed as such, FairBotk has the desirable property that the outcome

R(FairBotk,Opp) = (Cooperate,Defect)

will never occur: if its opponent defects, then FairBot will find no proof of its
opponent’s cooperation, so FairBot will itself defect. This property is called being
unexploitable.
At this point, a natural question arises: what happens when FairBot encounters a
copy of itself ? That is, what is FairBotk(FairBotk)? Each FairBot will be searching
for a proof that the other will cooperate. As such, one might expect to see a bottom-
less regression that will exhaust the proof bound B. (“The first FairBot must prove
that the second FairBot must prove that the first FairBot must prove that. . . .”)
Thus, it seems like they will find no proof of cooperation, and hence defect.
However, this turns out not to be the case. Letting

p[k] :=
(
FairBotk(FairBotk) = Cooperate) ,

it is a direct consequence of Theorem 4.2 that

FairBotk(FairBotk) = Cooperate.

In fact a much stronger claim is true, as the next theorem will show. It will demon-
strate a mutually cooperative program equilibrium (in the sense of Tennenholtz
[10]) among a wide variety of (unequal) agents, provided only that they employ a
certain principle of fairness, as follows.

5.1. G-fairness. Given a nonnegative increasing functionG , we say that an agent
(i.e., program) Ak taking a parameter k ∈ N is G-fair if for any opponent (i.e.,
program) Opp, we have

� �k+G(LengthOf(Opp))
(
Opp(Ak) = C)→

(
Ak(Opp) = C) ,

where LengthOf(Opp) is the character length of the opponent’s source code.
In words, Ak is G-fair if finding a short proof of its opponent’s cooperation is a
sufficient condition for Ak to cooperate, when “short” is flexibly defined to be an
increasing function of its opponent’s complexity, i.e., k +G(LengthOf(Opp)). The
agents FairBotk defined above areG-fair (where G is the function appearing in line
2 of their source code), and the reader is encouraged to keep them in mind as a
motivating example for the following result:

1We must assume that Opp halts and returns either Cooperate or Defect in this case; note that
FairBotk always halts.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1377

Theorem 5.1 (Robust cooperation criterion). Suppose that
• e(k), the proof expansion function of our proof system as defined in Section 4,
satisfies e(O(lg(k))) ≺ k, and

• G(�) is any nondecreasing function satisfying G(�) � e(O(�)).
Then, for any G-fair agents Ak and Bk , there exists some r � 0 such that for all
m, n > r,

Am(Bn) = Bn(Am) = Cooperate.

5.2. Feasibility of bounds in Theorem 5.1. Before the proof, recall from Section
4.2 that we can achieve e(k) ∈ O(k) for automatic proof systems that are designed
for easy verifiability, in which case e(O(lg(k))) ≺ k, as needed.
Proof of Theorem 5.1. The proof will make use of Theorem 4.2 at the very end,
but first requires some additional proof-theoretic analysis. For brevity we let

a(k) := G(LengthOf(Ak)), (5.1)

b(k) := G(LengthOf(Bk)), (5.2)

α[m, n] :=
(
Am(Bn) = Cooperate) , and (5.3)

�[n,m] :=
(
Bn(Am) = Cooperate) (5.4)

so we can write the G-fairness conditions more compactly as

��m+b(n)(�[n,m])→ α[m, n] and (5.5)

��n+a(m)(α[m, n])→ �[n,m].
For later convenience, we also choose a nondecreasing computable function

f(k) � e(O(lg(k)))
such that

6f(2�) ≤ G(�).
For example, we could take f(k) = �G(�lg(k)�)/6�.
Now, LengthOf(Ak) > lg(k) and LengthOf(Bk) > lg(k) since they reference the
parameter k in their code. Applying G to both sides yields

a(k), b(k) > G(lg(k)) ≥ 6f(k). (5.6)

Define an “eventual cooperation” formula:

p[k] := (∀m > k)(∀n > k)(α[m, n] and �[n,m]).
Using Quantifier Distribution once on the definition of p[k],

� (∀k)(�f(k)(p[k])→ (∀m > k)(�C ′((∀n > k)(α[m, n] and �[n,m]))))

where C ′ = C + 2f(k) + lg(m). Applying Quantifier Distribution again,

� (∀k)
(
�f(k)p[k]→ (∀m > k)(∀n > k)(�C ′′(α[m, n] and �[n,m]))

)
. (5.7)

Where C ′′ = 3C + 4f(k) + 2lg(m) + lg(n). Now, for m, n large and >k, we have

3C + lg(n) < n and by (5.6),

4f(k) + 2lg(m) < 6f(m) < a(m).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1378 ANDREWCRITCH

Adding these inequalities yields

3C + 4f(k) + 2lg(m) + lg(n) < n + a(m),

so for some k1, from (5.7) we derive

� (∀k > k1)
(
�f(k)(p[k])→ (∀m > k)(∀n > k)

(
�n+a(m)(α[m, n])

))
.

Similarly, we also have

3C + 2lg(m) < m and

4f(k) + lg(n) < 5f(n) < b(n), so for some k2 ≥ k1,

� (∀k > k2)
(
�f(k)(p[k])→

(∀m > k)(∀n > k)
(
�n+a(m)(α[m, n]) and �m+b(n)(�[n,m])

))
. (5.8)

Thus by (5.5),

� (∀k > k2)
(
�f(k)(p[k])→ (∀m > k)(∀n > k)

(
c(n,m) and c(m, n))

)
, i.e.,

� (∀k > k2)
(
�f(k)(p[k])→ p[k]

)
.

Therefore, by Theorem 4.2 (and the note following it), for some k̂ we have

�
(
∀k > k̂

)
(p[k]).

In other words, for all m, n > k̂ + 1,

Am(Bn) = Bn(Am) = Cooperate.

Theorem 5.1 interesting for four reasons:
1. It is surprising.Löb’s Theorem has not been appliedmuch in the setting of game
theory, and in fact at the time of writing, 100% of the dozens of mathemati-
cians and computer scientists that the author has asked to guess the output
of FairBotk(FairBotk) have either guessed incorrectly (expecting the proof
searches to enter an infinite regress and thus reach their bounds), or given an
invalid argument for cooperation (such as “it would be better for the agents to
cooperate, so they will”).

2. It is advantageous. When k is large, FairBotk outperforms the classical
Nash/correlated equilibrium solution (Defect, Defect) to the Prisoner’s
Dilemma when facing itself (or any other G-fair agent) in a one-shot game
with no iteration and no future reputation.

3. It is unexploitable. That is, the outcome (Cooperate, Defect) will never occur
with a FairBot as player 1. If an opponent will defect against FairBot, FairBot
will find no proof of the opponent’s cooperation, so FairBot will also defect.

4. It is robust. Previous examples of cooperative program equilibria studied by
Tennenholtz [10] and Fortnow [4] all involved cooperation based on equality
of programs, a very fragile condition. Such fragility is not desirable if we wish
to build real-world cooperative systems. By contrast, the G-fairness criterion
relies only on the provability of the opponent’s cooperation, rather than details
of its implementation, and therefore establishes mutual cooperation between a
broad class of agents.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1379

§6. Conclusion. Theorem 4.2 represents a resource-bounded generalization of
Löb’s Theorem, which can be applied to algorithms that read and write proofs
using bounded computational resources, such as formal verification software. The-
orem 5.1 makes use of Theorem 4.2, and some additional proof-theoretic analysis,
to demonstrate how algorithmic agents who have access to one another’s source
codes can inexploitably achieve cooperative outcomes that out-perform classical
Nash equilibria and correlated equilibria. Moreover, the condition for cooperation
in Theorem 5.1, called “G-fairness”, is more robust than previously known unex-
ploitable cooperative conditions, which depended on literal source-code equality
(Tennenholtz, [10]).
As a direction for potential future investigation, it seems likely that other agents
described in the purely logical (noncomputable) setting of Bárász, Christiano, Fal-
lenstein et al. [1] and LaVictoire, Fallenstein, Yudkowsky et al. [5] will likely have
bounded, algorithmic analogs, and that many more general consequences of Löb’s
Theorem—perhaps all the theorems of Gödel–Löb provability logic—will have
resource-bounded analogs as well.

Appendix A. String abbreviations in proofs. In Section 2.2, we required that our
proof system allow the definition and use of abbreviations, because real-world proof
systems (such asMetaMath (Megill, [6])) do this, and because it makes our analysis
easier. Abbreviations are just string substitutions which must be replaced by their
previously defined values when reading a proof. For the sake of concreteness, we
illustrate this with an example.
Recall the axioms of Peano Arithmetic in first-order logic (FOL):

P1 : (∀x)(Sx �= 0)
P2 : (∀x)(∀y)(Sx = Sy → x = y)
P3 : (∀x)(x + 0 = x)
P4 : (∀x)(∀y)

(
x + Sy = S(x + y))

P5 : (∀x)(x · 0 = 0)
P6 : (∀x)(∀y)(x · Sy = (x · y) + x)

along with, for every formula A(x, ȳ) = A(x, y1, . . . , yk), the induction axiom

Ind (A) : (∀y1)(∀y2)(· · ·)(∀yk) ((
A(0, ȳ) and (∀x)(A(x, ȳ)→ A(Sx, ȳ))) → (∀x)(A(x, ȳ))) .

Below is a proof of the associativity of addition, which does not use abbreviations.
Some sections involving first-order logic are summarized in a single step, but this
is not necessary. This proof uses the induction axiom for the formula A(z) =
((x + y) + z = x + (y + z)):

By P3:

(x + y) + 0 = x + y. (A.1)

By P3:

(x + y) + 0 = x + (y + 0). (A.2)

By FOL (substitution):

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

1380 ANDREWCRITCH

(x + y) + z = x + (y + z)→ S((x + y) + z) = S(x + (y + z)). (A.3)

By P4:

S((x + y) + z) = (x + y) + Sz. (A.4)

By FOL (substitution of A.4 in A.3):

(x + y) + z = x + (y + z)→ (x + y) + Sz = S(x + (y + z)). (A.5)

By P4:

S(x + (y + z)) = x + S(y + z). (A.6)

By P4:

S(y + z) = y + Sz. (A.7)

By FOL (substitution of A.7 in A.6):

S(x + (y + z)) = x + (y + Sz). (A.8)

By FOL (substitution of A.8 in A.5):

(x + y) + z = x + (y + z)→ (x + y) + Sz = x + (y + Sz). (A.9)

By Ind (A(z)) from A.9:

(∀x)(∀y)(∀z)((x + y) + z = x + (y + z)). (A.10)

Part of this proof can bemade slightly shorter (in characters) using an abbreviation;
see below. An abbreviation, as it is meant here, is nothing more than a literal string
to be replaced by another string upon reading and checking the proof; it has no
particular type or grammatical role in the proof language aside from that. If we
chose to givemore structure to the types of abbreviations that are allowed, we could
make the checking of our proofs more efficient, and indeed, this is done in real-
world proof systems like MetaMath (Megill, [6]). This restriction is not needed for
the proofs in this article, however, so we allow abbreviations to be any literal string
substitution for simplicity.
Here is essentially the same proof as a above, using an abbreviation, “%HYP”,
defined on the third line of the proof:

By P3:

(x + y) + 0 = x + y. (A.11)

By P3:

(x + y) + 0 = x + (y + 0). (A.12)

Define abbreviation:

%HYP == “(x + y) + z = x + (y + z)”. (A.13)

By FOL (substitution):

%HYP → S((x + y) + z) = S(x + (y + z)). (A.14)

By P4:

S((x + y) + z) = (x + y) + Sz. (A.15)

By FOL (substitution of A.15 in A.14):

%HYP → (x + y) + Sz = S(x + (y + z)). (A.16)

By P4:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

A PARAMETRIC, RESOURCE-BOUNDEDGENERALIZATION OF LÖB’S THEOREM 1381

S(x + (y + z)) = x + S(y + z). (A.17)

By P4:

S(y + z) = y + Sz. (A.18)

By FOL (substitution of A.18 in A.17):

S(x + (y + z)) = x + (y + Sz). (A.19)

By FOL (substitution of A.19 in A.16):

%HYP → (x + y) + Sz = x + (y + Sz). (A.20)

By Ind(A(z)) from A.20:

(∀x)(∀y)(∀z)((x + y) + z = x + (y + z)). (A.21)

REFERENCES

[1] M.Bárász, P. Christiano, B. Fallenstein,M.Herreshoff, P. LaVictoire, andE. Yudkowsky,
Robust cooperation in the prisoner’s dilemma, arXiv preprint, 2014, arXiv:1401.5577.
[2] G. Boolos, The Logic of Provability, Cambridge University Press, New York, 1993.
[3] R. Cori and D. Lascar,Mathematical Logic: ACourse with Exercises, Part II, Oxford University

Press, New York, 2001.
[4] L. Fortnow, Program equilibria and discounted computation time, TARK ’09: 12th Conference on

Theoretical Aspects of Rationality and Knowledge, ACM Press, 2009, pp. 128–133.
[5] P.LaVictoire, B.Fallenstein, E.Yudkowsky,M. Barasz, P. Christiano, andM.Herreshoff,

Program equilibrium in the prisoner’s dilemma via Löb’s theorem, Multiagent Interaction without Prior
Coordination: Papers from the AAAI-14 Workshop, AAAI Publications, 2014.
[6] N. Megill, Metamath: A Computer Language for Pure Mathematics, Lulu Press, Morrisville,

NC, 2007.
[7] P. Pudlák, On the lengths of proofs of finistic consistency statements in first order theories, Logic

Colloquium ’84 (J. B. Paris, A. J. Wilkie, and G. M. Wilmers, editors), North-Holland, Amsterdam,
1986, pp. 165–196.
[8] , The lengths of proofs, Handbook of Proof Theory (S. R. Buss, editor), Studies in Logic

and the Foundations of Mathematics, vol. 137, Elsevier, Amsterdam, 1998, pp. 547–637.
[9] P. Tarau,Bijective size-proportionateGödel numberings for term algebras, unpublishedmanuscript,

2013.
[10]M. Tennenholtz, Program equilibrium. Games and Economic Behavior, vol. 49 (2004), no. 2,

pp. 363–373.
[11] S.-C. Tsai, J.-C. Chang, and R.-J. Chen,A space-efficient Gödel numbering with Chinese remain-

der theorem, Proceedings of the 19th Workshop on Combinatorial Mathematics and Computation Theory,
2002, pp. 192–195.

MACHINE INTELLIGENCE RESEARCH INSTITUTE
2030 ADDISON STREET, BERKELEY, CA 94704, USA
E-mail: critch@intelligence.org
URL: http://intelligence.org/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2017.42
Downloaded from https://www.cambridge.org/core. IP address: 24.5.133.77, on 01 Sep 2020 at 05:34:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.42
https://www.cambridge.org/core

