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Abstract

It is often argued that an agent making deci-
sions on behalf of two or more principals who
have different utility functions should adopt a
Pareto-optimal policy, i.e., a policy that cannot
be improved upon for one agent without mak-
ing sacrifices for another. A famous theorem of
Harsanyi shows that, when the principals have
a common prior on the outcome distributions
of all policies, a Pareto-optimal policy for the
agent is one that maximizes a fixed, weighted
linear combination of the principals’ utilities.

In this paper, we show that Harsanyi’s theorem
does not hold for principals with different pri-
ors, and derive a more precise generalization
which does hold, which constitutes our main
result. In this more general case, the relative
weight given to each principal’s utility should
evolve over time according to how well the
agent’s observations conform with that princi-
pal’s prior. The result has implications for the
design of contracts, treaties, joint ventures, and
robots.

1 Introduction

As AI systems take on an increasingly pivotal decision-
making role in human society, an important question
arises: Whose values should a powerful decision-making
machine be built to serve? [Bostrom, 2014]

Consider, informally, a scenario wherein two or more
principals—perhaps individuals, companies, or states—
are considering cooperating to build or otherwise obtain
an “agent” that will then interact with an environment
on their behalf. The “agent” here could be anything that
follows a policy, such as a robot, a corporation, or a web-
based AI system. In such a scenario, the principals will

be concerned with the question of “how much” the agent
will prioritize each principal’s interests, a question which
this paper addresses quantitatively.

One might be tempted to model the agent as maximizing
the expected value, given its observations, of some utility
function U of the environment that equals a weighted sum

w1U1 + w2U2 (1)

of the principals’ individual utility functions U1 and
U2, as Harsanyi’s social aggregation theorem [Harsanyi,
1980] recommends. Then the question of prioritization
could be reduced to that of choosing values for the weights
wi.

However, this turns out to be a suboptimal approach, from
the perspective of the principals. As we shall see in Propo-
sition 1, this solution form is not generally compatible
with Pareto-optimality when agents have different beliefs.
Harsanyi’s setting does not account for agents having dif-
ferent priors, nor for decisions being made sequentially,
after future observations.

In such a setting, we need a new form of solution, exhib-
ited in this paper. The solution is presented along with
a recursion (Theorem 3) that characterizes solutions by
a process algebraically similar to, but meaningfully dif-
ferent from, Bayesian updating. The updating process
resembles a kind of bet-settling between the principals,
which allows them each to expect to benefit from the
veracity of their own beliefs.

Qualitatively, this phenomenon can be seen in isolation
whenever two people make a bet on a piece of decision-
irrelevant trivia. If neither Alice nor Bob would base any
important decision on whether Michael Jackson was born
in 1958 or 1959, they might still make a bet for $100
on the answer. For a person chosen to arbitrate the bet
(their “agent”), Michael Jackson’s birth year now becomes
a decision-relevant observation: it determines which of
Alice and Bob gets the money!



Even in scenarios where differences in belief are not
decision-irrelevant, once might expect some “degree” of
bet-settling to arise from the disagreement. The main re-
sult of this paper (Theorem 3) is a precise formulation of
exactly how and how much a Pareto-optimal agent will
tend to prioritize each of its principals over time, as a
result of differences in their implicit predictions about the
agent’s observations.

Related work

This paper may be viewed as extending or complimenting
results in several areas:

Value alignment theory. The “single principal” value
alignment problem—that of aligning the value function
of an agent with the values of single human, or a team of
humans in close agreement with one another—is already
a very difficult one and should not be swept under the
rug; approaches like inverse reinforcement learning (IRL)
[Russell, 1998] [Ng et al., 2000] [Abbeel and Ng, 2004]
and cooperative inverse reinforcement learning (CIRL)
[Hadfield-Menell et al., 2016] have only begun to address
it.

Social choice theory. The whole of social choice theory
and voting theory may be viewed as an attempt to specify
an agreeable formal policy to enact on behalf of a group.
Harsanyi’s utility aggregation theorem [Harsanyi, 1980]
suggests one form of solution: maximizing a linear com-
bination of group members’ utility functions. The present
work shows that this solution is inappropriate when princi-
pals have different beliefs, and Theorem 3 may be viewed
as an extension of Harsanyi’s form that accounts simul-
taneously for differing priors and the prospect of future
observations. Indeed, Harsanyi’s form follows as a direct
corollary of Theorem 3 when principals do share the same
beliefs (Corollary 4).

Bargaining theory. The formal theory of bargaining,
as pioneered by [Nash, 1950] and carried on by [Myerson,
1979], [Myerson, 2013], and [Myerson and Satterthwaite,
1983], is also topical. Future investigation in this area
might be aimed at generalizing their work to sequential
decision-making settings, and this author recommends a
focus on research specifically targeted at resolving con-
flicts.

Multi-agent systems. There is ample literature examin-
ing multi-agent systems using sequential decision-making
models. Shoham and Leyton-Brown [2008] survey vari-
ous models of multiplayer games using an MDP to model
each agent’s objectives. Chapter 9 of the same text surveys

social choice theory, but does not account for sequential
decision-making.

Zhang and Shah [2014] may be considered a sequen-
tial decision-making approach to social choice: they use
MDPs to represent the decisions of players in a competi-
tive game, and exhibit an algorithm for the players that,
if followed, arrives at a Pareto-optimal Nash equilibrium
satisfying a certain fairness criterion. Among the litera-
ture surveyed here, that paper is the closest to the present
work in terms of its intended application: roughly speak-
ing, achieving mutually desirable outcomes via sequential
decision-making. However, that work is concerned with
an ongoing interaction between the players, rather than
selecting a policy for a single agent to follow as in this
paper.

Multi-objective sequential decision-making. There
is also a good deal of work on Multi-Objective Opti-
mization (MOO) [Tzeng and Huang, 2011], including
for sequential decision-making, where solution methods
have been called Multi-Objective Reinforcement Learn-
ing (MORL). For instance, Gábor et al. [1998] introduce
a MORL method called Pareto Q-learning for learning
a set of a Pareto-optimal polices for a Multi-Objective
MDP (MOMDP). Soh and Demiris [2011] define Multi-
Reward Partially Observable Markov Decision Processes
(MR-POMDPs), and use use genetic algorithms to pro-
duce non-dominated sets of policies for them. Roijers et
al. [2015] refer to the same problems as Multi-objective
POMDPS (MOPOMDPs), and provide a bounded ap-
proximation method for the optimal solution set for all
possible weightings of the objectives. Wang [2014] sur-
veys MORL methods, and contributes Multi-Objective
Monte-Carlo Tree Search (MOMCTS) for discovering
multiple Pareto-optimal solutions to a multi-objective op-
timization problem. Wray and Zilberstein [2015] intro-
duce Lexicographic Partially Observable Markov Deci-
sion Process (LPOMDPs), along with two accompanying
solution methods.

However, none of these or related works addresses sce-
narios where the objectives are derived from principals
with differing beliefs, from which the priority-shifting
phenomenon of Theorem 3 arises. Differing beliefs are
likely to play a key role in negotiations, so for that pur-
pose, the formulation of multi-objective decision-making
adopted here is preferable.

2 Notation

Random variables are denoted by uppercase letters, e.g.,
S1, and lowercase letters, e.g., s1, are used as indices



ranging over the values of a variable, as in the equation

E[S1] =
∑
s1

P(s1) · s1.

Given a set A, the set of probability distributions on A is
denoted ∆A.

Sequences are denoted by overbars, e.g., given a se-
quence (s1, . . . , sn), s̄ stands for the whole sequence.
Subsequences are denoted by subscripted inequalities,
so e.g., s≤4 stands for (s1, s2, s3), and s>4 stands for
(s5, . . . , sn).

3 Formalism

N.B.: All results in this paper generalize directly from
agents with two principals to agents with several, but for
clarity of exposition, the case of two principals will be
prioritized.

Consider a scenario wherein Alice and Bob will share
some cake, and have different predictions of the cake’s
color. Even if the color would be decision-irrelevant for
either Alice or Bob on their own (they don’t care what
color the cake is), we will show that the difference be-
tween their predictions will tend to make the cake color a
decision-relevant observation for a Pareto-optimal cake-
splitting policy that is adopted before they see the cake.
Specifically, we will show that Pareto-optimal policies
tend to incorporate some degree of bet-settling between
Alice and Bob, where the person who was more right
about the color of the cake will end up getting more of it.

Serving multiple principals as a single POMDP

To formalize such scenarios, where a single agent acts on
behalf of multiple principals, we need some definitions.

We encode each principal j’s view of the agent’s de-
cision problem as a finite horizon POMDP, Dj =
(Sj ,A, T j , U j ,O,Ωj , n), which simultaneously repre-
sents that principal’s beliefs about the environment, and
the principal’s utility function (see Russell et al. [2003]
for an introduction to POMDPs). These symbols take on
their usual meaning:

• Sj represents a set of possible states s of the envi-
ronment,

• A represents the set of possible actions a available
to the agent,

• T j represents the conditional probabilities principal
j believes will govern the environment state transi-
tions, i.e., Pj(si+1 | siai),

S1 S2 S3 S4

O1 A1 O2 A2 O3 A3

U

Figure 1: A POMDP with horizon n = 3 (in blue), being
solved by a full-memory policy (in green).

• U j represents principal j’s utility function from se-
quences of environmental states (s1, . . . , sn) to R;
for the sake of generality, U j is not assumed to be
additive over time, as reward functions often are,

• O represents the set of possible observations o of the
agent,

• Ωj represents the conditional probabilities principal
j believes will govern the agent’s observations, i.e.,
Pj(oi | si), and

• n is the horizon (number of time steps)

This POMDP structure is depicted by the Bayesian net-
work in Figure 1. (See Darwiche [2009] for an intro to
Bayesian networks.) At each point in time i, the agent
has a time-specific policy πi, which receives the agent’s
history,

hi := (o≤i, a<i),

and returns a distribution πi(− | hi) on actions ai, which
will then be used to generate an action ai with probability
π(ai | hi). Thus, principal j’s subjective probability of
an outcome (s̄, ō, ā) is given by a probability distribution
Pj that takes π as a parameter:

Pj(s̄, ō, ā;π) := Pj(s1) ·
n∏

i=1

Pj(oi | si)

π(ai | hi)Pj(si+1 | si, ai) (2)

Full-memory assumption. Every policy π in this paper
will be assumed to employ a “full memory”, so it decom-
poses into a sequence of policies πi for each time step.
In Figure 1, the part of the Bayes net governed by the
full-memory policy is highlighted in green.



Common knowledge assumptions. It is assumed that
the principals will have common knowledge of the (full-
memory) policy π = (π1, . . . , πn) they select for the
agent to implement, but that the principals may have dif-
ferent beliefs about how the environment works, and of
course different utility functions. It is also assumed that
the principals have common knowledge of one another’s
current beliefs at the time of the agent’s creation, which
we refer to as their their priors.

This last assumption is critical. During the agent’s cre-
ation, one should expect each principal’s beliefs to have
updated somewhat in response to disagreements from
the other. Assuming common knowledge of their priors
means assuming the principals to have reached an equilib-
rium where, each knowing what the other believes, they
do not wish to further update their own beliefs.1

Pareto-optimal policies

A policy will be considered Pareto-optimal relative to a
set of POMDPs it could be deployed to solve.

Definition 1 (Compatible POMDPs). We say that two
POMDPs, D1 and D2, are compatible if any policy for
one may be viewed as a policy for the other, i.e., they have
the same set of actions A and observations O, and the
same number of time steps n.

In this context, where a single policy π may be evaluated
relative to more than one POMDP, we use superscripts to
represent which POMDP is governing the probabilities
and expectations, e.g.,

Ej [U j ;π] :=
∑

s̄∈(Sj)n

Pj(s̄;π)U j(s̄)

represents the expectation in Dj of the utility function
U j , assuming policy π is followed.

Definition 2 (Pareto-optimal policies). A policy π
is Pareto-optimal for a set of compatible POMDPs
(D1, . . . , Dk) if for any other policy π′ and any j ∈
{1, . . . , k}

Ej [U j ;π′] > Ej [U j ;π] ⇒ (∃`)
(
E`[U `;π′] < E`[U `;π]

)
,

It is assumed that, before the agent’s creation, the prin-
cipals will be seeking a Pareto-optimal (full-memory)
policy for the agent to follow, relative to the POMDPs Dj

describing each principal’s view of the agent’s task.

1It is enough to assume the principals have reached a “per-
sistent disagreement” that cannot be mediated by the agent in
some way. Future work should design solutions for facilitating
the process of attaining common knowledge, or to obviate the
need to assume it.

Example: cake betting

A quantitative model of a cake betting scenario is laid out
in Table 1, and described as follows.

Alice (Principal 1) and Bob (Principal 2) are about to
be presented with a cake which they can choose to split
in half to share, or give entirely to one of them. They
have (built or purchased) a robot that will make the cake-
splitting decision on their behalf. Alice’s utility function
returns 0 if she gets no cake, 20 if she gets half a cake, or
30 if she gets a whole cake. Bob’s utility function values
Bob getting cake in the same way.

However, Alice and Bob have different beliefs about the
color of the cake. Alice is 90% sure that the cake is red
(S1 = O1 = “red”), versus 10% sure it will be green
(S1 = O1 = “green”), whereas Bob’s probabilities are
reversed.

Upon seeing the cake, the robot must decide to either give
Alice the entire cake (A1 = S2 = (all, none)), split the
cake half-and-half (A1 = S2 = (half, half)), or give Bob
the entire cake (A1 = S2 = (none, all)). Moreover, Alice
and Bob have common knowledge of all these facts.

Now, consider the following Pareto-optimal full-memory
policy that favors Alice (Principal 1) when O1 is red, and
Bob (Principal 2) when O1 is green:

π̂(− | red) = 100%(all, none)
π̂(− | green) = 100%(none, all)

This policy can be viewed intuitively as a bet between Al-
ice and Bob about the value of O1, and is highly appealing
to both principals:

E1[U1; π̂] = 90%(30) + 10%(0) = 27

E2[U2; π̂] = 10%(0) + 90%(30) = 27

In particular, π̂ is more appealing to both Alice and Bob
than an agreement to deterministically split the cake (half,
half), which would yield them each an expected utility of
20. However,

Proposition 1. The Pareto-optimal strategy π̂ above can-
not be implemented by any agent that naı̈vely maximizes
a fixed-over-time linear combination of the conditionally
expected utilities of the two principals. That is, it cannot
be implemented by any policy π satisfying

π(− | o1) ∈ argmax
α∈∆A

(
r · E1[U1 | o1; a1 ∼ α] + (1− r)

·E2[U2 | o1; a1 ∼ α]
)

(3)

for some fixed r ∈ [0, 1]. Moreover, every such policy
π is strictly worse than π̂ in expectation to one of the
principals.



S1 = O1 P1(O1) P2(O1) A1 = S2 U1 U2

red cake 90% 10%
(all, none) 30 0
(half, half) 20 20
(none, all) 0 30

green cake 10% 90%
(all, none) 30 0
(half, half) 20 20
(none, all) 0 30

Table 1: An example scenario wherein a Pareto-optimal full-memory policy undergoes priority shifting (who gets the
cake), based on features that are decision-irrelevant for each principal (cake color).

Proof. See appendix.

This proposition is relatively unsurprising when one con-
siders the full-memory policy π̂ intuitively as a bet-
settling mechanism, because the nature of betting is to
favor different preferences based on future observations.
However, to be sure of this impossibility claim, one must
rule out the possibility that the π̂ could be implemented
by having the agent choose which element of the argmax
in Equation 3 to use based on whether the cake appears
red or green. (See appendix.)

Characterizing Pareto-optimality geometrically

With the definitions above, we can characterize a Pareto-
optimality as a geometric condition.

Policy mixing assumption. Given policies π1, . . . , πR

and a distribution α = (α1, . . . , αR) ∈ ∆{1, . . . , R},
we assume that the agent may construct a new policy by
choosing at time 0 between the πr with probability αr,
and then executing the chosen policy for the rest of time.
We write this policy as π =

∑
r α

rπr, whence we derive:

Ej

U j ;
∑
r

αrπr

 =
∑
r

αrEj [U j ;πr]. (4)

Lemma 1 (Polytope Lemma). A full-memory policy π is
Pareto-optimal to principals 1 and 2 if and only if there
exist weights w1, w2 ≥ 0 with w1 + w2 = 1 such that

π ∈ argmax
π∗∈Π

(
w1E1[U1;π∗] + w2E2[U2;π∗]

)
(5)

Proof. The mixing assumption gives the set of policies Π
the structure of a convex space that the maps Ej [U j ;−]
respect by Equation 4. This ensures that the image of the
map f : Π → R2 given by

f(π) :=
(
E1[U1;π], E2[U2;π]

)
is a closed, convex polytope. As such, a point (x, y) lies
on the Pareto boundary of image(f) if and only if there

B

S1 S2 S3 S4

O1 A1 O2 A2 O3 A3

U

Figure 2: A POMDP (mixture) with horizon n = 3 ini-
tialized by a Boolean B, being solved by a full-memory
policy (green)

exist nonnegative weights (w1, w2), not both zero, such
that

(x, y) ∈ argmax
(x∗,y∗)∈image(f)

(
w1x∗ + w2y∗

)
After normalizing w1 + w2 to equal 1, this implies the
result.

Characterizing Pareto-optimality probabilistically

To help us apply the Polytope Lemma, we will adopt
an interpretation wherein the weights wi are subjective
probabilities for the agent, as follows.

For any w ∈ ∆{1, 2}, we define a new POMDP, D, that
works by flipping a (w1, w2)-weighted coin, and then
running D1 or D2 thereafter, according to the coin flip.
We denote this by

D = w1D1 + w2D2,

and call D a POMDP mixture. A formal definition of D
is given in the appendix. It can be depicted by a Bayes
net by adding an additional environmental node for B in
the diagram of D1 and D2 (see Figure 2).

Given any full-memory policy π, the expected payoff of



π in w1D1 + w2D2 is exactly

P(B = 1) · E[U | B = 1;π]

+ P(B = 2) · E[U | B = 2;π]

= w1E2[U1;π] + w2E2[U2;π]

Therefore, using the above definitions, Lemma 1 may be
restated in the following equivalent form:

Lemma 2 (Mixture Lemma). Given a pair (D1, D2) of
compatible POMDPs, a full-memory policy π is Pareto-
optimal for that pair if and only if there exists w ∈
∆{1, 2} such that π is an optimal full-memory policy
for the single POMDP given by w1D1 + w2D2.

Expressed in the form of Equation 5, it might not be
clear how a Pareto-optimal full-memory policy makes
use of its observations over time, aside from storing them
in memory. For example, is there any sense in which
the agent carries “beliefs” about the environment that
it “updates” at each time step? Lemma 2 allows us to
reduce some such questions about Pareto-optimal policies
to questions about single POMDPs.

If π is an optimal full-memory policy for a single POMDP,
the optimality of each action distribution πi(− | hi) can
be characterized without reference to the previous policy
components (π1, . . . , πi−1), nor to πi(− | h′

i) for any
alternate history h′

i. This can be expressed using Pearl’s
“Do()” notation [Pearl, 2009]:

Definition 3 (“do” notation). The probability of ō
causally conditioned on ā is defined as

Pj(ō | Do(ā))

:=
∑

s̄∈(Sj)n

Pj(s1) ·
n∏

i=1

Pj(oi | si)Pj(si+1 | siai)

Definition 4 (Expected utility abbreviation). For brevity,
given any POMDP D and policy π, we write

ED
π (α;hi) := E[U | hi; an ∼ α; π>i].

i.e., the total expected utility in D that would result from
replacing πi(− | hi) by α. This quantity does not depend
on π≤i.

Proposition 2 (Classical separability). If D is a POMDP
described by conditional probabilities P(− | −) and
utility function U (as in Equation 2), then a full-memory
policy π is optimal for D if and only if for each time
step i and each observation/action history hi, the action
distribution πi(− | hi) satisfies the following backward
recursion:

πi(− | hi) ∈ argmax
α∈∆A

(
P
(
o≤i | Do(a<i)

)
· ED

π (α;hi)

)

This characterization of πi(−|hi) does not refer to
π1, . . . , πi−1, nor to πi(h

′
i) for any alternate history h′

i.

Proof. This is just Bellman’s Principle of Optimality. See
[Bellman, 1957], Chap. III. 3.

N.B.: Unlike Bellman’s “backup” equation, the above
proposition requires no assumption whatsoever on the
form of the utility function. Note also that when the prob-
ability term P(o≤i | Do(a<i)) is non-zero, it may be
removed from the argmax without changing the theorem
statement. But when the term is zero, its presence is es-
sential, and implies that πi(− | hi) can be anything.

It turns out that Pareto-optimality can be characterized in
a similar way by backward recursion from the final time
step. The resulting recursion reveals a pattern in how the
weights on the principals’ conditionally expected utilities
must change over time, which is the main result of this
paper:

Theorem 3 (Pareto-optimal control theorem). Given a
pair (D1, D2) of compatible POMDPs with horizon n, a
full-memory policy π is Pareto-optimal if and only if its
components πi for i ≤ n satisfy the following backward
recursion for some weights w ∈ ∆{1, 2}:

πi(− | hi) ∈ argmax
α∈∆A

(
w1P1

(
o≤i | Do(a<i)

)
· ED1

π (α;hi)

+ w2P2
(
o≤i | Do(a<i)

)
· ED2

π (α;hi)

)

In words, to achieve Pareto-optimality, the agent must

1. use each principal’s own world-model Dj when es-
timating the degree EDj

π (α;hi) to which a decision
α favors that principal’s utility function, and

2. shift the relative priority of each principal’s ex-
pected utility in the agent’s maximizationtarget over
time, by a factor proportional to how well that
principal’s prior predicts the agent’s observations,
Pi
(
o≤i | Do(a<i)

)
.

N.B.: The analogous result for more than two POMDPs
holds as well, with essentially the same proof.

Proof of Theorem 3. By Lemma 2, the Pareto-optimality
of π for (D1, D2) is equivalent to its classical optimality
for D = w1D1 + w2D2 for some (w1, w2). Writing P
for probabilities in D, Proposition 2 says this is equivalent



to α = πi(− | hi) maximizing the following expression
F (α) for each i:

F (α) = P
(
o≤i | Do(a<i)

)
· ED

π (α;hi). (6)

The expectation factor on the right equals

ED
π (α;hi) = P

(
B = 1 | o≤i,Do(a<i)

)
· ED1

π (α;hi)

+ P
(
B = 2 | o≤i,Do(a<i)

)
· ED2

π (α;hi).

Multiplying by

P
(
o≤i | Do(a<i)

)
= w1P1

(
o≤i | Do(a<i)

)
+ w2P2

(
o≤i | Do(a<i)

)
and applying Bayes’ rule yields that

F (α) = w1P1
(
o≤i | Do(a<i)

)
ED1

π (α;hi)

+ w2P2
(
o≤i | Do(a<i)

)
ED2

π (α;hi),

hence the result.

To see the necessity of the Pj terms that shift the ex-
pectation weights in Theorem 3 over time, recall from
Proposition 1 that, without these, some Pareto-optimal
policies cannot be implemented. These Pj terms are re-
sponsible for the “bet-settling” phenomena discussed in
the introduction.

However, when the principals have the same beliefs, they
aways assign the same probability to the agent’s observa-
tions, so the weights on their respective valuations do not
change over time. Hence, as a special instance, we derive:

Corollary 4 (Harsanyi’s utility aggregation formula).
Suppose that principals 1 and 2 share the same beliefs
about the environment, i.e., the pair (D1, D2) of compati-
ble POMDPs agree on all parameters except the princi-
pals’ utility functions U1 6= U2. Then a full-memory
policy π is Pareto-optimal if and only if there exists
w ∈ ∆{1, 2} such that for i ≤ n, πi satisfies

πi(− | hi) ∈ argmax
α∈∆A

(

E[w1U1 + w2U2] | hi; ai ∼ α; π>i]
)

where E = E1 = E2 denotes the shared expectations of
both principals.

Proof. Setting E = E1 = E2 in Theorem 3, factor-
ing out the common coefficient P1

(
o≤i | Do(a<i)

)
=

P2
(
o≤i | Do(a<i)

)
, and applying linearity of expecta-

tion yields the result.

4 Conclusion

Theorem 3 exhibits a novel form for the objective of a
sequential decision-making policy that is Pareto-optimal
according to principals with differing beliefs.

This form represents two departures from naı̈ve utility ag-
gregation: to achieve Pareto-optimality for principals with
differing beliefs, an agent must (1) use each principal’s
own beliefs (updated on the agent’s observations) when
evaluating how well an action will serve that principal’s
utility function, and (2) shift the relative priority it assigns
to each principal’s expected utilities over time, by a factor
proportional to how well that principal’s prior predicts the
agent’s observations.

Implications for contract design

Theorem 3 has implications for modeling and structur-
ing the process of contract design. If a contract is being
created between principals with different beliefs, then to
the extent that the principals will target Pareto-optimality
among them as an objective, there will be a tendency for
the contract to end up implicitly settling bets between
the principals. Perhaps making the bet-settling nature of
Pareto-optimal contract design more explicit might help
to design contracts that are more attractive to both prin-
cipals, along the lines illustrated by Proposition 1. This
could potentially lead to more successful negotiations,
provided the principals remained willing to uphold the
contract after its implicit bets have been settled.

Implications for shareable AI systems

Proposition 1 shows how the Pareto-optimal form of The-
orem 3 is more attractive—from the perspective of the
principals—than policies that do not account for differ-
ences in their beliefs. The relative attractiveness of shared
ownership versus individual ownership of AI systems may
be essential to the technological adoption of shared sys-
tems. Consider the following product substitutions that
might be enabled by the development of shareable ma-
chine learning systems:

• Office assistant software jointly controlled by a team,
as an improvement over personal assistant software
for each member of the team.

• A team of domestic robots controlled by a family,
as an improvement over individual robots each con-
trolled by a separate family member.

• A web-based security system shared by several inter-
ested companies or nations, as an improvement over
individual security systems deployed by each group.



It may represent a significant technical challenge for any
of these substitutions to become viable. However, ma-
chine learning systems that are able to approximate Pareto-
optimality as an objective are more likely to be sufficiently
appealing to motivate the switch from individual control
to sharing.

Implications for bargaining versus racing

Consider two nations—allies or adversaries—who must
decide whether to cooperate in the deployment of a very
powerful and autonomous AI system.

If the nations cannot reach agreement as to what policy a
jointly owned AI system should follow, joint ownership
may be less attractive than building separate AI systems,
one for each party. This could lead to an arms race be-
tween nations competing under time pressure to develop
ever more powerful militarized AI systems. Under such
race conditions, everyone loses, as each nation is afforded
less time to ensure the safety and value alignment of its
own system.

The first author’s primary motivation for this paper is to
initiate a research program with the mission of averting
such scenarios. Beginning work today on AI architectures
that are more amenable to joint ownership could help lead
to futures wherein powerful entities are more likely to
share and less likely to compete for the ownership of such
systems.

Future work

Insofar as Theorem 3 is not particularly mathematically
sophisticated—it employs only basic facts about con-
vexity and linear algebra—this suggests there may be
more low-hanging fruit to be found in the domain of “ma-
chine implementable social choice theory”. Future work
should address methods for helping the principals to share
information—perhaps in exchange for adjustments to the
weights in Theorem 3—to reach either a state of agree-
ment or a persistent disagreement that allows the theorem
to be applied. More ambitiously, bargaining models that
account for a degree of transparency between the princi-
pals should be employed, as individual humans and in-
stitutions have some capacity for detecting one another’s
intentions.

As well, scenarios where the principals continue to ex-
hibit some active control over the system after its creation
should be modeled in detail. In real life, principals usu-
ally continue to exist in their agents’ environments, and
accounting for this will be a separate technical challenge.

As a final motivating remark, consider that social choice
theory and bargaining theory were both pioneered dur-

ing the Cold War, when it was particularly compelling to
understand the potential for cooperation between human
institutions that might behave competitively. In the com-
ing decades, machine intelligence will likely bring many
new challenges for cooperation, as well as new means to
cooperate, and new reasons to do so. As such, new tech-
nical aspects of social choice and bargaining will likely
continue to emerge.

5 Appendix

Here we make available the technical details for defin-
ing POMDP mixtures, and proving that certain Pareto-
optimal expectations cannot be obtained without priority-
shifting.

Definition 5 (POMDP mixtures). Suppose that D1 and
D2 are compatible POMDPs, with parameters Dj =
(Sj ,A, T j , U j ,O,Ωj , n). Define a new POMDP com-
patible with both, denoted D = w1D1 + w2D2, with
parameters Dj = (S,A, T, U,O,Ω, n), as follows:

• S := {(j, s) | j ∈ {1, 2}, s ∈ Sj},

• Environmental transition probabilities T given by

P
(
(j, s1)

)
:= wj · Pj(s1)

for any initial state s1 ∈ Sj , and thereafter,

P
(
(j′, si+1) | (j, si), ai

)
:=

Pj
(
si+1 | siai

)
if j′ = j

0 if j′ 6= j

Hence, the value of j will be constant over time, so a
full history for the environment may be represented
by a pair

(j, s̄) ∈ {1} × (S1)n ∪ {2} × (S2)n.

Let B denote the boolean random variable that
equals whichever constant value of j obtains, so
then

P(B = j) = wj

• The utility function U is given by

U(j, s̄) := U j(s̄)

• The observation probabilities Ω are given by

P
(
oi | (j, si)

)
:= P(B = j) · Pj(oi | si)

In particular, the agent does not observe directly
whether j = 1 or j = 2.



Proof of Proposition 1. Suppose π is any policy satisfy-
ing Equation 3 for some fixed r, and consider the follow-
ing cases for r:

1. If r < 1/3, then π must satisfy

π(− | o1) = 100%(none, all).

Here, E1[U1;π] = 0 < 27, so π is strictly worse
than π̂ in expectation to Alice.

2. If r = 1/3, then π must satisfy

π(− | o1) = q(o1)(none, all)+(1−q(o1))(half, half)

for some q(o1) ∈ [0, 1] depending on o1. Here,
E1[U1;π] ≤ 20 < 27 (with equality when q(red) =
q(green) = 1), so π is strictly worse than π̂ in ex-
pectation to Alice.

3. If 1/3 < r < 2/3, then π must satisfy

π(− | o1) = 100%(half, half)

Here, E1[U1;π] = E2[U2;π] = 20 < 27, so π is
strictly worse than π̂ in expectation to both Alice
and Bob.

The remaining cases, r = 2/3 and r > 2/3, are symmet-
ric to the first two, with Bob in place of Alice and (none,
all) in place of (all, none).

Hence, no fixed linear combination of the principals’ util-
ity functions can be maximized to simultaneously achieve
an expected utility of 27 for both players.
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