
Journal of Arti�cial Intelligence Research 17 (2002) 171-228 Submitted 3/02; published 9/02

Towards Adjustable Autonomy for the Real World

Paul Scerri scerri@isi.edu

David V. Pynadath pynadath@isi.edu

Milind Tambe tambe@usc.edu

Information Sciences Institute and Computer Science Department

University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292 USA

Abstract

Adjustable autonomy refers to entities dynamically varying their own autonomy, trans-
ferring decision-making control to other entities (typically agents transferring control to
human users) in key situations. Determining whether and when such transfers-of-control
should occur is arguably the fundamental research problem in adjustable autonomy. Pre-
vious work has investigated various approaches to addressing this problem but has often
focused on individual agent-human interactions. Unfortunately, domains requiring collabo-
ration between teams of agents and humans reveal two key shortcomings of these previous
approaches. First, these approaches use rigid one-shot transfers of control that can result in
unacceptable coordination failures in multiagent settings. Second, they ignore costs (e.g.,
in terms of time delays or e�ects on actions) to an agent's team due to such transfers-of-
control.

To remedy these problems, this article presents a novel approach to adjustable auton-
omy, based on the notion of a transfer-of-control strategy. A transfer-of-control strategy
consists of a conditional sequence of two types of actions: (i) actions to transfer decision-
making control (e.g., from an agent to a user or vice versa) and (ii) actions to change an
agent's pre-speci�ed coordination constraints with team members, aimed at minimizing
miscoordination costs. The goal is for high-quality individual decisions to be made with
minimal disruption to the coordination of the team. We present a mathematical model
of transfer-of-control strategies. The model guides and informs the operationalization of
the strategies using Markov Decision Processes, which select an optimal strategy, given an
uncertain environment and costs to the individuals and teams. The approach has been
carefully evaluated, including via its use in a real-world, deployed multi-agent system that
assists a research group in its daily activities.

1. Introduction

Exciting, emerging application areas ranging from intelligent homes (Lesser et al., 1999), to
routine organizational coordination (Pynadath et al., 2000), to electronic commerce (Collins
et al., 2000a), to long-term space missions (Dorais et al., 1998) utilize the decision-making
skills of both agents and humans. These new applications have brought forth an increasing
interest in agents' adjustable autonomy (AA), i.e., in entities dynamically adjusting their own
level of autonomy based on the situation (Mulsiner & Pell, 1999). Many of these exciting
applications will not be deployed unless reliable AA reasoning is a central component. With
AA, an entity need not make all decisions autonomously; rather it can choose to reduce its
own autonomy and transfer decision-making control to other users or agents, when doing so

c2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Scerri, Pynadath & Tambe

is expected to have some net bene�t (Dorais et al., 1998; Barber, Goel, & Martin, 2000a;
Hexmoor & Kortenkamp, 2000).

A central problem in AA is to determine whether and when transfers of decision-making
control should occur. A key challenge is to balance two potentially conicting goals. On the
one hand, to ensure that the highest-quality decisions are made, an agent can transfer con-
trol to a human user (or another agent) whenever that user has superior decision-making
expertise.1 On the other hand, interrupting a user has high costs and the user may be
unable to make and communicate a decision, thus such transfers-of-control should be min-
imized. Previous work has examined several di�erent techniques that attempt to balance
these two conicting goals and thus address the transfer-of-control problem. For example,
one technique suggests that decision-making control should be transferred if the expected
utility of doing so is higher than the expected utility of making an autonomous decision
(Horvitz, Jacobs, & Hovel, 1999). A second technique uses uncertainty as the sole rationale
for deciding who should have control, forcing the agent to relinquish control to the user
whenever uncertainty is high (Gunderson & Martin, 1999). Yet other techniques transfer
control to a user if an erroneous autonomous decision could cause signi�cant harm (Dorais
et al., 1998) or if the agent lacks the capability to make the decision (Ferguson, Allen, &
Miller, 1996).

Unfortunately, these previous approaches to transfer-of-control reasoning and indeed
most previous work in AA, have focused on domains involving a single agent and a single
user, isolated from interactions with other entities. When applied to interacting teams of
agents and humans, where interaction between an agent and a human impacts the inter-
action with other entities, these techniques can lead to dramatic failures. In particular,
the presence of other entities as team members introduces a third goal of maintaining co-
ordination (in addition to the two goals already mentioned above), which these previous
techniques fail to address. Failures occur for two reasons. Firstly, these previous techniques
ignore team related factors, such as costs to the team due to incorrect decisions or due to
delays in decisions during such transfers-of-control. Secondly (and more importantly), these
techniques use one-shot transfers-of-control, rigidly committing to one of two choices: (i)
transfer control and wait for input (choice H) or (ii) act autonomously (choice A). However,
given interacting teams of agents and humans, either choice can lead to costly failures if the
entity with control fails to make or report a decision in a way that maintains coordination.
For instance, a human user might be unable to provide the required input due to a tem-
porary communication failure; this may cause an agent to fail in its part of a joint action,
as this joint action may be dependent on the user's input. On the other hand, forcing a
less capable entity to make a decision simply to avoid miscoordination can lead to poor
decisions with signi�cant consequences. Indeed, as seen in Section 2.2, when we applied a
rigid transfer-of-control decision-making to a domain involving teams of agents and users,
it failed dramatically.

Yet, many emerging applications do involve multiple agents and multiple humans acting
cooperatively towards joint goals. To address the shortcomings of previous AA work in such
domains, this article introduces the notion of a transfer-of-control strategy. A transfer-of-
control strategy consists of a pre-de�ned, conditional sequence of two types of actions: (i)

1. While the AA problem in general involves transferring control from one entity to another, in this paper,

we will typically focus on interactions involving autonomous agents and human users.

172

Towards Adjustable Autonomy for the Real World

actions to transfer decision-making control (e.g., from an agent to a user or vice versa);
(ii) actions to change an agent's pre-speci�ed coordination constraints with team members,
rearranging activities as needed (e.g., reordering tasks to buy time to make the decision).
The agent executes such a strategy by performing the actions in order, transferring control to
the speci�ed entity and changing coordination as required, until some point in time when the
entity currently in control exercises that control and makes the decision. Thus, the previous
choices of H or A are just two of many di�erent and possibly more complex transfer-of-
control strategies. For instance, an ADAH strategy implies that an agent initially attempts
to make an autonomous decision. If the agent makes the decision autonomously the strategy
execution ends there. However, there is a chance that it is unable to make the decision
in a timely manner, perhaps because its computational resources are busy with higher
priority tasks. To avoid miscoordination the agent executes a D action which changes the
coordination constraints on the activity. For example, a D action could be to inform other
agents that the coordinated action will be delayed, thus incurring a cost of inconvenience
to others but buying more time to make the decision. If it still cannot make the decision, it
will eventually take action H, transferring decision-making control to the user and waiting
for a response. In general, strategies can involve all available entities and contain many
actions to change coordination constraints. While such strategies may be useful in single-
agent single-human settings, they are particularly critical in general multiagent settings, as
discussed below.

Transfer-of-control strategies provide a exible approach to AA in complex systems
with many actors. By enabling multiple transfers-of-control between two (or more) entities,
rather than rigidly committing to one entity (i.e., A orH), a strategy attempts to provide the
highest quality decision, while avoiding coordination failures. In particular, in a multiagent
setting there is often uncertainty about whether an entity will make a decision and when it
will do so, e.g., a user may fail to respond, an agent may not be able to make a decision as
expected or a communication channel may fail. A strategy addresses such uncertainty by
planning multiple transfers of control to cover for such contingencies. For instance, with the
ADH strategy, an agent ultimately transfers control to a human to attempt to ensure that
some response will be provided in case the agent is unable to act. Furthermore, explicit
coordination-change actions, i.e., D actions, reduce miscoordination e�ects, for a cost, while
better decisions are being made. Finally, since the utility of transferring control or changing
coordination is dependent on the actions taken afterwards, the agent must plan a strategy
in advance to �nd the sequence of actions that maximizes team bene�ts. For example,
reacting to the current situation and repeatedly taking and giving control as in the strategy
ADHADH : : : may be more costly than planning ahead, making a bigger coordination
change, and using a shorter ADH strategy. We have developed a decision theoretic model
of such strategies, that allows the expected utility of a strategy to be calculated and, hence,
strategies to be compared.

Thus, a key AA problem is to select the right strategy, i.e., one that provides the
bene�t of high-quality decisions without risking signi�cant costs in interrupting the user and
miscoordination with the team. Furthermore, an agent must select the right strategy despite
signi�cant uncertainty. Markov decision processes (MDPs) (Puterman, 1994) are a natural
choice for implementing such reasoning because they explicitly represent costs, bene�ts and
uncertainty as well as doing lookahead to examine the potential consequences of sequences

173

Scerri, Pynadath & Tambe

of actions. In Section 4, a general reward function is presented for an MDP that results in an
agent carefully balancing risks of incorrect autonomous decisions, potential miscoordination
and costs due to changing coordination between team members. Detailed experiments were
performed on the MDP, the key results of which are as follows. As the relative importance
of central factors, such as the cost of miscoordination, was varied the resulting MDP policies
varied in a desirable way, i.e., the agent made more decisions autonomously if the cost of
transferring control to other entities increased. Other experiments reveal a phenomenon not
reported before in the literature: an agent may act more autonomously when coordination
change costs are either too low or too high, but in a \middle" range, the agent tends to act
less autonomously.

Our research has been conducted in the context of a real-world multi-agent system,
called Electric Elves (E-Elves) (Chalupsky, Gil, Knoblock, Lerman, Oh, Pynadath, Russ,
& Tambe, 2001; Pynadath et al., 2000), that we have used for over six months at the
University of Southern California, Information Sciences Institute. The E-Elves assists a
group of researchers and a project assistant in their daily activities, providing an exciting
opportunity to test AA ideas in a real environment. Individual user proxy agents called
Friday (from Robinson Crusoe's servant Friday) act in a team to assist with rescheduling
meetings, ordering meals, �nding presenters and other day-to-day activities. Over the course
of several months, MDP-based AA reasoning was used around the clock in the E-Elves,
making many thousands of autonomy decisions. Despite the unpredictability of the user's
behavior and the agent's limited sensing abilities, the MDP consistently made sensible
AA decisions. Moreover, many times the agent performed several transfers-of-control to
cope with contingencies such as a user not responding. One lesson learned when actually
deploying the system was that sometimes users wished to inuence the AA reasoning, e.g.,
to ensure that control was transferred to them in particular circumstances. To allow users
to inuence the AA reasoning, safety constraints are introduced that allow users to prevent
agents from taking particular actions or ensuring that they do take particular actions.
These safety constraints provide guarantees on the behavior of the AA reasoning, making
the basic approach more generally applicable and, in particular, making it more applicable
to domains where mistakes have serious consequences.

The rest of this article is organized as follows. Section 2 gives a detailed description of the
AA problem and presents the Electric Elves as a motivating example application. Section
3 presents a formal model of transfer-of-control strategies for AA. (Readers not interested
in the mathematical details may wish to skip over Section 3.) The operationalization of
the strategies via MDPs is described in Section 4. In Section 5, the results of detailed
experiments are presented. Section 6 looks at related work, including how earlier AA work
can be analyzed within the strategies framework. Section 7 gives a summary of the article.
Finally, Section 8 outlines areas where the work could be extended to make it applicable to
more applications.

2. Adjustable Autonomy { The Problem

The general AA problem has not been previously formally de�ned in the literature, partic-
ularly for a multiagent context. In the following, a formal de�nition of the problem is given
so as to clearly de�ne the task for the AA reasoning. The team, which may consist entirely

174

Towards Adjustable Autonomy for the Real World

of agents or include humans, has some joint activity, �. Each entity in the team works
cooperatively on the joint activity. The agent, A, has a role, �, in the team. Depending
on the speci�c task, some or all of the roles will need to be performed successfully in order
for the joint activity to succeed. The primary goal of the agent is the success of � which
it pursues by performing �. Performing � requires that one or more non-trivial decisions
are made. To make a decision, d, the agent can draw upon n other entities from a set
E = fe1 : : : eng, which typically includes the agent itself. Each entity in E (e.g., a human
user) is capable of making decision d. The entities in E are not necessarily part of the
team performing �. Di�erent agents and users will have di�ering abilities to make decisions
due to available computational resources, access to relevant information, etc. Coordination
constraints, �, exist between � and the roles of other members of the team. For example,
various roles might need to be executed simultaneously or in a certain order or with some
combined quality or total cost. A critical facet of the successful completion of the joint task
�, given its jointness, is to ensure that coordination between team members is maintained,
i.e., � are not violated. Thus, we can describe an AA problem instance with the tuple:
hA;�; �;�; d; Ei.

From an AA perspective, the agent can take two types of actions for a decision, d.
First, it can transfer control to an entity in E capable of making that decision. In general,
there are no restrictions on when, how often or for how long decision-making control can
be transferred to a particular entity. Typically, the agent can also transfer decision-making
control to itself. In general, we assume that when the agent transfers control, it does not
have any guarantee on the exact time of response or exact quality of the decision made by
the entity to which control is transferred. In fact, in some cases it will not know whether
the entity will be able to make a decision at all or even whether the entity will know it has
decision-making control, e.g., if control was transferred via email, the agent may not know
if the user actually read the email.

The second type of action that an agent can take is to request changes in the coor-
dination constraints, �, between team members. A coordination change gives the agent
the possibility of changing the requirements surrounding the decision to be made, e.g., the
required timing, cost or quality of the decision, which may allow it to better ful�ll its re-
sponsibilities. A coordination change might involve reordering or delaying tasks or it may
involve changing roles, or it may be a more dramatic change where the team pursues � in
a completely di�erent way. Changing coordination has some cost, but it may be better
to incur this cost than violate coordination constraints, i.e., incur miscoordination costs.
Miscoordination between team members will occur for many reasons, e.g., a constraint that
limits the total cost of a joint task might be violated if one team member incurs a higher
than expected cost and other team members do not reduce their costs. In this article, we
are primarily concerned with constraints related to the timing of roles, e.g., ordering con-
straints or requirements on simultaneous execution. This in turn, usually requires that the
agent guards against delayed decisions although it can also require that a decision is not
made too soon.

Thus, the AA problem for the agent, given a problem instance, hA;�; �;�; d; Ei, is to
choose the transfer-of-control or coordination-change actions that maximizes the overall
expected utility of the team. In the remainder of this section we describe a concrete, real-

175

Scerri, Pynadath & Tambe

world domain for AA (Section 2.1) and an initial failed approach that motivates our solution
(Section 2.2).

2.1 The Electric Elves

This research was initiated in response to issues that arose in a real application and the
resulting approach was extensively tested in the day-to-day running of that application.
The Electric Elves (E-Elves) is a project at USC/ISI to deploy an agent organization in
support of the daily activities of a human organization (Pynadath et al., 2000; Chalupsky
et al., 2001). We believe this application to be fairly typical of future generation appli-
cations involving teams of agents and humans. The operation of a human organization
requires the performance of many everyday tasks to ensure coherence in organizational
activities, e.g., monitoring the status of activities, gathering information and keeping ev-
eryone informed of changes in activities. Teams of software agents can aid organizations
in accomplishing these tasks, facilitating coherent functioning and rapid, exible response
to crises. A number of underlying AI technologies support the E-Elves, e.g., technologies
devoted to agent-human interactions, agent coordination, accessing multiple heterogeneous
information sources, dynamic assignment of organizational tasks, and deriving information
about organization members (Chalupsky et al., 2001). While these technologies are useful,
AA is fundamental to the e�ective integration of the E-Elves into the day-to-day running
of a real organization and, hence, is the focus of this paper.

The basic design of the E-Elves is shown in Figure 1(a). Each agent proxy is called
Friday (after Robinson Crusoes' man-servant Friday) and acts on behalf of its user in the
agent team. The design of the Friday proxies is discussed in detail in (Tambe, Pynadath,
Chauvat, Das, & Kaminka, 2000) (where they are referred to as TEAMCORE proxies).
Currently, Friday can perform several tasks for its user. If a user is delayed to a meeting,
Friday can reschedule the meeting, informing other Fridays, who in turn inform their users.
If there is a research presentation slot open, Friday may respond to the invitation to present
on behalf of its user. Friday can also order its user's meals (see Figure 2(a)) and track the
user's location, posting it on a Web page. Friday communicates with users using wireless
devices, such as personal digital assistants (PALM VIIs) and WAP-enabled mobile phones,
and via user workstations. Figure 1(b) shows a PALM VII connected to a Global Positioning
Service (GPS) device, for tracking users' locations and enabling wireless communication
between Friday and a user. Each Friday's team behavior is based on a teamwork model,
called STEAM (Tambe, 1997). STEAM encodes and enforces the constraints between roles
that are required for the success of the joint activity, e.g., meeting attendees should arrive at
a meeting simultaneously. When a role within the team needs to be �lled, STEAM requires
that a team member is assigned responsibility for that role. To �nd the best suited person,
the team auctions o� the role, allowing it to consider a combination of factors and assign
the best suited user. Friday can bid on behalf of its user, indicating whether its user is
capable and/or willing to �ll a particular role. Figure 2(b) shows a tool that allows users
to view auctions in progress and intervene if they so desire. In the auction in progress, Jay
Modi's Friday has bid that Jay is capable of giving the presentation, but is unwilling to do
so. Paul Scerri's agent has the highest bid and was eventually allocated the role.

176

Towards Adjustable Autonomy for the Real World

Fr i day Fr i day

Fr i day Fr i day

(a) (b)

Figure 1: (a) Overall E-Elves architecture, showing Friday agents interacting with users.
(b)Palm VII for communicating with users and GPS device for detecting their
location.

177

Scerri, Pynadath & Tambe

AA is critical to the success of the E-Elves since, despite the range of sensing devices,
Friday has considerable uncertainty about the user's intentions and even location; hence,
Friday will not always have the appropriate information to make correct decisions. On the
other hand, while the user has the required information, Friday cannot continually ask the
user for input, since such interruptions are disruptive and time-consuming. There are four
decisions in the E-Elves to which AA reasoning is applied: (i) whether a user will attend a
meeting on time; (ii) whether to close an auction for a role; (iii) whether the user is willing
to perform an open team role; and (iv) if and what to order for lunch. In this paper, we
focus on the AA reasoning for two of those decisions: whether a user will attend a meeting
on time and whether to close an auction for a role. The decision as to whether a user will
attend a meeting on time is the most often used and most diÆcult of the decisions Friday
faces. We briey describe the decision to close an auction and later show how an insight
provided by the model of strategies led to a signi�cant reduction in the amount of code
required to implement the AA reasoning for that decision. The decision to volunteer a user
for a meeting is similar to the earlier decisions, and omitted for brevity; the decision to order
lunch is currently implemented in a simpler fashion and is not (at least as yet) illustrative
of the full set of complexities.

A central decision for Friday, which we describe in terms of our problem formulation,
hA;�; �;�; d; Ei, is whether its user will attend a meeting at the currently scheduled meet-
ing time. In this case, Friday is the agent, A. The joint activity, �, is for the meeting
attendees to attend the meeting simultaneously. Friday acts as proxy for its user, hence
its role, �, is to ensure that its user arrives at the currently scheduled meeting time. The
coordination constraint, �, between Friday's role and the roles of other Fridays is that they
occur simultaneously, i.e., the users must attend at the currently scheduled time. If any
attendee arrives late, or not at all, the time of all the attendees is wasted; on the other
hand, delaying a meeting is disruptive to users' schedules. The decision, d, is whether the
user will attend the meeting or not and could be made by either Friday or the user, i.e.,
E = fuser;Fridayg. Clearly, the user will be often better placed to make this decision.
However, if Friday transfers control to the user for the decision, it must guard against mis-
coordination, i.e., having the other attendees wait, while waiting for a user response. Some
decisions are potentially costly, e.g., incorrectly telling the other attendees that the user
will not attend, and Friday should avoid taking them autonomously. To buy more time for
the user to make the decision or for itself to gather more information, Friday could change
coordination constraints with a D action. Friday has several di�erent D actions at its dis-
posal, including delaying the meeting by di�erent lengths of time, as well as being able to
cancel the meeting entirely. The user can also request a D action, e.g., via the dialog box in
Figure 5(a), to buy more time to make it to the meeting. If the user decides a D is required,
Friday is the conduit through which other Fridays (and hence their users) are informed.
Friday must select a sequence of actions, either transferring control to the user, delaying or
cancelling the meeting or autonomously announcing that the user will or will not attend,
to maximize the utility of the team.

The second AA decision that we look at is the decision to close an auction for an open
role and assign a user to that role.2 In this case, the joint activity, �, is the group research

2. There are also roles for submitting bids to the auction but the AA for those decisions is simpler, hence

we do not focus on them here.

178

Towards Adjustable Autonomy for the Real World

(a) (b)

Figure 2: (a) Friday transferring control to the user for a decision whether to order lunch.
(b) The E-Elves auction monitoring tool.

meeting and the role, �, is to be the auctioneer. Users will not always submit bids for the
role immediately; in fact, the bids may be spread out over several days, or some users might
not bid at all. The speci�c decision, d, on which we focus is whether to close the auction
and assign the role or continue waiting for incoming bids. Once individual team members
provide their bids, the auctioneer agent or human team leader decides on a presenter based
on that input (E = fuser; auctioneer agentg). The team expects a willing presenter to do
a high-quality research presentation, which means the presenter will need some time to
prepare. Thus, the coordination constraint, � is that the most capable, willing user must
be allocated to the role with enough time to prepare the presentation. Despite individually
responsible actions, the agent team may reach a highly undesirable decision, e.g., assigning
the same user week after week, hence there is advantage in getting the human team leader's
input. The agent faces uncertainty (e.g., will better bids come in?), costs (i.e., the later
the assignment, the less time the presenter has to prepare), and needs to consider the
possibility that the human team leader has some special preference about who should do
a presentation at some particular meeting. By transferring control, the agent allows the
human team leader to make an assignment. For this decision, a coordination-change action,
D, would reschedule the research meeting. However, relative to the cost of cancelling the
meeting, the cost of rescheduling is too high for rescheduling to be a useful action.

2.2 Decision-Tree Approach

One logical avenue of attack on the AA problem for the E-Elves was to apply an approach
used in a previously reported, successful meeting scheduling system, in particular CAP
(Mitchell, Caruana, Freitag, McDermott, & Zabowski, 1994). Like CAP, Friday learned
user preferences using C4.5 decision-tree learning (Quinlan, 1993). Friday recorded values
of a dozen carefully selected attributes and the user's preferred action (identi�ed by asking

179

Scerri, Pynadath & Tambe

the user) whenever it had to make a decision. Friday used the data to learn a decision
tree that encoded its autonomous decision making. For AA, Friday also asked if the user
wanted such decisions taken autonomously in the future. From these responses, Friday
used C4.5 to learn a second decision tree which encoded its rules for transferring control.
Thus, if the second decision tree indicated that Friday should act autonomously, it would
take the action suggested by the �rst decision tree. Initial tests with the C4.5 approach
were promising (Tambe et al., 2000), but a key problem soon became apparent. When
Friday encountered a decision for which it had learned to transfer control to the user, it
would wait inde�nitely for the user to make the decision, even though this inaction caused
miscoordination with teammates. In particular, other team members would arrive at the
meeting location, waiting for a response from the user's Friday, but they would end up
completely wasting their time as no response arrived. To address this problem, if a user
did not respond within a �xed time limit (�ve minutes), Friday took an autonomous action.
Although performance improved, when the resulting system was deployed 24/7 it led to
some dramatic failures, including:

1. Example 1: Tambe's (a user) Friday incorrectly cancelled a meeting with the division
director because Friday over-generalized from training examples.

2. Example 2: Pynadath's (another user) Friday incorrectly cancelled the group's weekly
research meeting when a time-out forced the choice of an (incorrect) autonomous
action.

3. Example 3: A Friday delayed a meeting almost 50 times, each time by 5 minutes.
It was correctly applying a learned rule but ignoring the nuisance to the rest of the
meeting participants.

4. Example 4: Tambe's Friday automatically volunteered him for a presentation, but he
was actually unwilling. Again Friday over-generalized from a few examples and when
a timeout occurred it took an undesirable autonomous action.

Clearly, in a team context, rigidly transferring control to one agent (user) failed. Fur-
thermore, using a time-out that rigidly transferred control back to the agent, when it was
not capable of making a high-quality decision, also failed. In particular, the agent needed
to better avoid taking risky decisions by explicitly considering their costs (example 1), or
take lower cost actions to delay meetings to buy the user more time to respond (example 2
and 4). Furthermore, as example 3 showed, the agent needed to plan ahead, to avoid taking
costly sequences of actions that could be replaced by a single less costly action (example
3). In theory, using C4.5 Friday might have eventually been able to learn rules that would
successfully balance costs and deal with uncertainty and handle all the special cases and so
on, but a very large amount of training data would be required.

3. Strategies for Adjustable Autonomy

To avoid rigid one-shot transfers of control and allow team costs to be considered, we
introduce the notion of a transfer-of-control strategy, which is de�ned as follows:

180

Towards Adjustable Autonomy for the Real World

De�nition 3.1 A transfer-of-control strategy is a pre-de�ned, conditional sequence of two
types of actions: (i) actions to transfer decision-making control (e.g., from an agent to

a user or other agents, or vice versa) and (ii) actions to change an agent's pre-speci�ed

coordination constraints with team members, aimed at minimizing miscoordination costs.

The agent executes a transfer-of-control strategy by performing the speci�ed actions in
sequence, transferring control to the speci�ed entity and changing coordination as required,
until some point in time when the entity currently in control exercises that control and
makes the decision. Considering multi-step strategies allows an agent to exploit decision-
making sources considered too risky to exploit without the possibility of retaking control.
For example, control could be transferred to a very capable but not always available decision
maker then taken back if the decision was not made before serious miscoordination occurred.
More complex strategies, potentially involving several coordination changes, give the agent
the option to try several decision-making sources or to be more exible in getting input from
high-quality decision makers. As a result, transfer-of-control strategies speci�cally allow an
agent to avoid costly errors, such as those enumerated in the previous section.3

Given an AA problem instance, hA;�; �;�; d; Ei, agent A can transfer decision-making
control for a decision d to any entity ei 2 E, and we denote such a transfer-of-control
action with the symbol representing the entity, i.e., transferring control to ei is denoted as
ei. When the agent transfers decision-making control, it may stipulate a limit on the time
that it will wait for a response from that entity. To capture this additional stipulation,
we denote transfer-of-control actions with this time limit, e.g., ei(t) represents that ei has
decision-making control for a maximum time of t. Such an action has two possible outcomes:
either ei responds before time t and makes the decision, or it does not respond and decision
d remains unmade at time t. In addition, the agent has some mechanism by which it
can change coordination constraints (denoted D) to change the expected timing of the
decision. The D action changes the coordination constraints, �, between team members.
The action has an associated value, Dvalue, which speci�es its magnitude (i.e., how much
the D has alleviated the temporal pressure), and a cost, Dcost, which speci�es the price paid
for making the change. We can concatenate such actions to specify a complete transfer-
of-control strategy. For instance, the strategy H(5)A would specify that the agent �rst
relinquishes control and asks entity H (denoting the Human user). If the user responds
with a decision within �ve minutes, then there is no need to go further. If not, then the
agent proceeds to the next transfer-of-control action in the sequence. In this example, this
next action, A, speci�es that the agent itself make the decision and complete the task.
No further transfers of control occur in this case. We can de�ne the space of all possible
strategies with the following regular expression:

S = (E �R)((E �R) +D)� (1)

where (E �R) is all possible combinations of entity and maximum time.
For readability, we will frequently omit the time speci�cations from the transfer-of-

control actions and instead write just the order in which the agent transfers control among

3. In some domains, it may make sense to attempt to get input from more than one entity at once, hence

requiring strategies that have actions that might be executed in parallel. However, in this work, as a �rst

step, we do not consider such strategies. Furthermore, they are not relevant for the domains at hand.

181

Scerri, Pynadath & Tambe

the entities and executes Ds (e.g., we will often write HA instead of H(5)A). If time
speci�cations are omitted, we assume the transfers happen at the optimal times,4 i.e.,
the times that lead to highest expected utility. If we consider strategies with the same
sequence of actions but di�erent timings to be the same strategy, the agent has O(jEjk)
possible strategies to select from, where k is the maximum length of the strategy and jEj
is the number of entities. Thus, the agent has a wide range of options, even if practical
considerations lead to a reasonable upper bound on k and jEj. The agent must select the
strategy that maximizes the overall expected utility of �.

In the rest of this section, we present a mathematical model of transfer-of-control strate-
gies for AA and use that model to guide the search for a solution. Moreover, the model
provides a tool for predicting the performance of various strategies, justifying their use
and explaining observed phenomena of their use. Section 3.1 presents the model of AA
strategies in detail. Section 3.2 reveals key properties of complex strategies, including dom-
inance relationships among strategies. Section 3.3 examines the E-Elves application in the
light of the model, to make speci�c predictions about some properties that a successful
AA approach reasoning for that application class will have. These predictions shape the
operationalization of strategies in Section 4.

3.1 A Mathematical Model of Strategies

The transfer-of-control model presented in this section allows calculation of the expected
utility (EU) of individual strategies, thus allowing strategies to be compared. The calcu-
lation of a strategy's EU considers four elements: the likely relative quality of di�erent
entities' decisions; the probability of getting a response from an entity at a particular time;
the cost of delaying a decision; and the costs and bene�ts of changing coordination con-
straints. While other parameters might also be modeled in a similar manner, our experience
with the E-Elves and other AA work suggests that these parameters are the critical ones
across a wide range of joint activities.

The �rst element of the model is the expected quality of an entity's decision. In general,
we capture the quality of an entity's decision at time t with the functions EQ = fEQd

e(t) :
R! Rg. The quality of a decision reects both the probability that the entity will make an
\appropriate" decision and the costs incurred if the decision is wrong. The expected quality
of a decision is calculated in a decision theoretic way, by multiplying the probability of each
outcome, i.e., each decision, by the utility of that decision, i.e., the cost or bene�t of that
decision. For example, the higher the probability that the entity will make a mistake, the
lower the quality, even lower if the mistakes might be very costly. The quality of decision
an entity will make can vary over time as the information available to it changes or as it has
more time to \think". The second element of the model is the probability that an entity
will make a decision if control is transferred to it. The functions, P = fP e

>(t) : R! [0; 1]g,
represent continuous probability distributions over the time that the entity e will respond.
That is, the probability that ei will respond before time t0 is

R t0
0 P ei

> (t)dt.
The third element of the model is a representation of the cost of inappropriate timing

of a decision. In general, not making a decision until a particular point in time incurs some

4. The best time to transfer control can be found, e.g., by di�erentiating the expected utility equation in

Section 3.1 and solving for 0.

182

Towards Adjustable Autonomy for the Real World

cost that is a function of both the time, t, and the coordination constraints, �, between
team members. As stated earlier, we focus on cases of constraint violations due to delays
in making decisions. Thus, the cost is due to the violation of the constraints caused by
not making a decision until that point in time. We can write down a wait-cost function:
W = f(�; t) which returns the cost of not making a decision until a particular point in time
given coordination constraints, �. This miscoordination cost is a fundamental aspect of our
model given our emphasis on multiagent domains. It is called a \wait cost" because it models
the miscoordination that arises while the team \waits" for some entity to make the ultimate
decision. In domains like E-Elves, the team incurs such wait costs in situations where (for
example) other meeting attendees have assembled in a meeting room at the time of the
meeting, but are kept waiting without any input or decision from Friday (potentially because
it cannot provide a high-quality decision, nor can it get any input from its user). Notice
that di�erent roles will lead to di�erent wait cost functions, since delays in the performance
of di�erent roles will have di�erent e�ects on the team. We assume that there is some
point in time, �, after which no more costs accrue, i.e., if t � � then f(�; t) = f(�;�).
At the deadline, �, the maximum cost due to inappropriate timing of a decision has been
incurred. Finally, we assume that, in general, until �, the wait cost function is non-
decreasing, reecting the idea that bigger violations of constraints lead to higher wait costs.
The �nal element of the model is the coordination-change action, D, which moves the agent
further away from the deadline and hence reduces the wait costs that are incurred. We
model the e�ect of the D by letting W be a function of t � Dvalue (rather than t) after
the D action and as having a �xed cost, Dcost, incurred immediately upon its execution.
For example, in the E-Elves domain, suppose at the time of the meeting, Friday delays the
meeting by 15 minutes (D action). Then, in the following time period, it will incur the
relatively low cost of not making a decision 15 minutes before the meeting (t � Dvalue),
rather than the relatively high cost of not making the decision at the time of the meeting.
Other, possibly more complex, models of a D action could also be used.

We use these four elements to compute the EU of an arbitrary strategy, s. The utility
derived from a decision being made at time t by the entity in control is the quality of the
entity's decision minus the costs incurred from waiting until t, i.e., EUd

ec(t) = EQd
ec(t) �

W(t). If a coordination-change action has been taken it will also have an e�ect on utility.
Until a coordination change of value Dvalue is taken at some time �, the incurred wait cost
isW(�). Then, between � and t, the wait cost incurred isW(t�Dvalue)�W(��Dvalue).
Thus, if a D action has been taken at time � for cost Dcost and with value Dvalue, the
utility from a decision at time t (t > �) is: EUd

ec
(t) = EQd

ec
(t)�W(�)�W(��Dvalue) +

W(t�Dvalue)�Dcost. To calculate the EU of an entire strategy, we multiply the response
probability mass function's value at each instant by the EU of receiving a response at that
instant, and then integrate over the products. Hence, the EU for a strategy s given a
problem instance, hA;�; �;�; d; Ei, is:

EU hA;�;�;�;d;Ei
s =

Z 1

0
P>(t)EU

d
ec(t) :dt (2)

If a strategy involves several actions, we need to ensure that the probability of response
function and the wait-cost calculation reect the control situation at that point in the
strategy. For example, if the user, H, has control at time t, P>(t) should reect H's

183

Scerri, Pynadath & Tambe

EUd
A = EQd

A(0) �W(0) (3)

EUd
e =

Z
�

0
P>(t)� (EQd

e(t)�W(t)):dt +

Z 1

�

P>(t)� (EQd
e(t)�W(D)):dt (4)

EUd
eA =

Z T

0
P>(t)� (EQd

e(t)�W(t)):dt +

Z 1

T
P>(t):dt� (EQd

a(T)�W(T)) (5)

EUd
eDeA = (6)R�

0 P>(t)(EQ
d
e(t)�W(t)):dt0 +R T

� P>(t)(EQ
d
e(t)�W(�) +W(��Dvalue)�W(t�Dvalue)�Dcost):dt+R1

T P>(t)(EQ
d
A(t)�W(�) +W(��Dvalue)�W(T �Dvalue)�Dcost):dt

Table 1: General AA EU equations for sample transfer of control strategies.

probability of responding at t, i.e., PH
> (t0). To this end, we can break the integral from

Equation 2 into separate terms, with each term representing one segment of the strategy,
e.g., for a strategy UA there would be one term for when U has control and another for
when A has control.

Using this basic technique for writing down EU calculations, we can write down the
speci�c equations for arbitrary transfer-of-control strategies. Equations 3-6 in Table 1
show the EU equations for the strategies A, e, eA and eDeA respectively. The equations
assume that the agent, A, can make the decision instantaneously (or at least, with no delay
signi�cant enough to a�ect the overall value of the decision). The equations are created by
writing down the integral for each of the segments of the strategy, as described above. T
is the time when the agent takes control from e, and � is the time at which the D occurs.
One can write down the equations for more complex strategies in the same way. Notice
that these equations make no assumptions about the particular functions.

Given that the EU of a strategy can be calculated, the AA problem for the agent reduces
to �nding and following the transfer-of-control strategy that will maximize its EU. Formally,
the agent's problem is:

Axiom 3.1 For a problem hA;�; �;�; d; Ei, the agent must select s 2 S such that 8s0 2

S; s0 6= s;EU
hA;�;�;�;d;Ei
s � EU

hA;�;�;�;d;Ei
s0

184

Towards Adjustable Autonomy for the Real World

0.1 0.2 0.3w 0.4
0.8

1.2
p

-5

0

5

Figure 3: Graph comparing the EU of two strategies, HDA (solid line) and H (dashed line)
given a particular instantiation of the model with constant expected decision-
making quality, exponentially rising wait costs, and Markovian response proba-
bilities. p is a parameter to the P>(t) function, with higher p meaning longer
expected response time. w is a parameter to the W(t) function with higher w
meaning more rapidly accruing wait costs.

3.2 Dominance Relationships among Strategies

An agent could potentially �nd the strategy with the highest EU by examining each and
every strategy in S, computing its EU, and selecting the strategy with the highest value. For
example, consider the problem for domains with constant expected decision-making quality,
exponentially rising wait costs, and Markovian response probabilities. Figure 3 shows a
graph of the EU of two strategies (HDA and H) given this particular model instantiation.
Notice that, for di�erent response probabilities and rates of wait cost accrual, one strategy
outperforms the other, but neither strategy is dominant over the entire parameter space.
The EU of a strategy is also dependent on the timing of transfers of control, which in turn
depend on the relative quality of the entities' decision making. Appendix I provides a more
detailed analysis.

Fortunately, we do not have to evaluate and compare each and every candidate in an
exhaustive search to �nd the optimal strategy. We can instead use analytical methods
to draw general conclusions about the relative values of di�erent candidate strategies. In
particular, we present three Lemmas that show the domain-level conditions under which
particular strategy types are superior to others. The Lemmas also lead us to the, perhaps
surprising, conclusion that complex strategies are not necessarily superior to single-shot
strategies, even in a multi-agent context; in fact, no particular strategy dominates all other
strategies across all domains.

Let us �rst consider the AA subproblem of whether an agent should ever take back
control from another entity. If we can show that, under certain conditions, an agent should
always eventually take back control, then our strategy selection process can ignore any
strategies where the agent does not do so (i.e., any strategies not ending in A). The agent's
goal is to strike the right balance between not waiting inde�nitely for a user response and not

185

Scerri, Pynadath & Tambe

taking a risky autonomous action. Informally, the agent reasons that it should eventually
make a decision if the expected cost of continued waiting exceeds the di�erence between the
user's decision quality and its own. More formally, the agent should eventually take back
decision-making control i�, for some time t:

Z
�

t
P>(t

0)W(t0):dt0 �W(t) > EQd
U (t)�EQd

A(t) (7)

where the left-hand side calculates the future expected wait costs and the right-hand side
calculates the extra utility to be gained by getting a response from the user. This result
leads to the following general conclusion about strategies that end with giving control back
to the agent:

Lemma 1: If s 2 S is a strategy ending with e 2 E, and s0 is sA, then EUd
s0 > EUd

s i�

8e 2 E;9t < � such that
R
�

t P>(t
0)W(t0):dt0 �W(t) > EQd

e(t)�EQd
A(t)

Lemma 1 says that if, at any point in time, the expected cost of inde�nitely leaving
control in the hands of the user exceeds the di�erence in quality between the agent's and
user's decisions, then strategies which ultimately give the agent control dominate those
which do not. Thus, if the rate of wait cost accrual increases or the di�erence in the
relative quality of the decision-making abilities decreases or the user's probability of response
decreases, then strategies where the agent eventually takes back control will dominate. A
key consequence of the Lemma (in the opposite direction) is that, if the rate that costs accrue
does not accelerate, and if the probability of response stays constant (i.e., Markovian), then
the agent should inde�nitely leave control with the user (if the user had originally been
given control), since the expected wait cost will not change over time. Hence, even if the
agent is faced with a situation with potentially high total wait costs, the optimal strategy
may be a one-shot strategy of handing over control and waiting inde�nitely, because the
expected future wait costs at each point in time are relatively low. Thus, Lemma 1 isolates
the condition under which we should consider appending an A transfer-of-control action to
our strategy.

We can perform a similar analysis to identify the conditions under which we should
include a D action in our strategy. The agent has incentive in changing coordination
constraints via a D action due to the additional time made available for getting a high-
quality response from an entity. However, the overall value of a D action depends on
a number of factors (e.g., the cost of taking the D action and the timing of subsequent
transfers of control). We can calculate the expected value of a D by comparing the EU of a
strategy with and without a D. The D is useful if and only if the increased expected value
of the strategy with it is greater than its cost, Dcost.

Lemma 2: if s 2 S has no D and s0 is s with a D included at t then EUd
s0 > EUd

s i�R
P>(t

0)W(t):dt0 �
R
P>(t

0)W(tjD):dt0 > Dcost

We can illustrate the consequences of Lemma 2 by considering the speci�c problemmodel
of Appendix I (i.e., P>(t) = � exp��t,W(t) = ! exp!t, EQd

e(t) = c, and candidate strategies

eA and eDA). In this case, EUd
eDA > EUd

eA i� �(�� !)!� exp�(��!)�(1� exp�!Dvalue) >
Dcost. Figure 4 plots the value of the D action as we vary the rate of wait cost accumulation,
w, and the parameter of the Markovian response probability function, p. The graph shows

186

Towards Adjustable Autonomy for the Real World

0.1 0.2 0.3 0.4 0.5w 0.25
0.5

0.75
1

p

-0.04
0

0.04
0.08
0.12
0.16

Value

Figure 4: The value of D action in a particular model (P>(t) = � exp��t, W(t) = ! exp!t,
and EQd

e(t) = c).

that the bene�t from the D is highest when the probability of response is neither too low
nor too high. When the probability of response is low, the user is unlikely to respond,
even given the extra time; hence, the agent will have incurred Dcost with no bene�t. A
D also has little value when the probability of response is high, because the user will likely
respond shortly after the D, meaning that it has little e�ect (the e�ect of the D is on the
wait costs after the action is taken). Overall, according to Lemma 2, at those points where
the graph goes above Dcost, the agent should include a D action, and, at all other points, it
should not. Figure 4 demonstrates the value of a D action for a speci�c subclass of problem
domains, but we can extend our conclusion to the more general case as well. For instance,
while the speci�c model has exponential wait costs, in models where wait costs grow more
slowly, there will be fewer situations where Lemma 2's criterion holds (i.e., where a D will
be useful). Thus, Lemma 2 allows us to again eliminate strategies from consideration, based
on the evaluation of its criterion in the particular domain of interest.

Given Lemma 2's evaluation of adding a single D action to a strategy, it is natural to
ask whether a second, third, etc. D action would increase EU even further. In other words,
when a complex strategy is better than a simple one, is an even more complex strategy even
better? The answer is \not necessarily".

Lemma 3: 8K 2 N;9W 2 W; 9P 2 P; 9EQ 2 EQ such that the optimal strategy
has K D actions.

Informally, Lemma 3 says that we cannot �x a single, optimal number of D actions,
because for every possible number of D actions, there is a potential domain (i.e., combination
of a wait-cost, response-probability, and expected-quality functions) for which that number
of D actions is justi�ed by being optimal. Consider a situation where the cost of a D was
a function of the number of Ds to date (i.e., the cost of the Kth D is f(K)). For example,
in the E-Elves' meeting case, the cost of delaying a meeting for the third time is much
higher than the cost of the �rst delay, since each delay is successively more annoying to
other meeting participants. Hence, the test for the usefulness of the Kth D in a strategy,

187

Scerri, Pynadath & Tambe

given the speci�c model in Appendix I, is:

f(K) < !(exp�Dvalue! �1)� (
�

Æ
exp�ÆT �

!

Æ
exp�Æ�� exp!���T) (8)

Depending on the nature of f(K), Equation 8 can hold for any number of Ds, so, for any
K, there will be some conditions for which a strategy with K Ds is optimal. For instance,
in Section 5.3, we show that the maximum length of the optimal strategy for a random
con�guration of up to 25 entities is usually less than eight actions.

Equation 8 illustrates how the value of an additional D can be limited by changing Dcost,
but Lemma 3 also shows us that other factors can a�ect the value of an additional D. For
example, even with a constant Dcost, the value of an additional D depends on how many
other D actions the agent performs. Figure 4 shows that the value of the D depends on the
rate at which wait costs accrue. If the rate of wait cost accrual accelerates over time (e.g.,
for the exponential model), a D action slows that acceleration, rendering a second D action
less useful (since the wait costs are now accruing more slowly). Notice also that Ds become
valueless after the deadline, when wait costs stop accruing.

Taken together, Lemmas 1-3 show that no particular transfer-of-control strategy dom-
inates all others across all domains. Moreover, very di�erent strategies, from single-shot
strategies to arbitrarily complex strategies, are appropriate for di�erent situations, although
the range of situations where a particular transfer-of-control action provides bene�t can be
quite narrow. Since a strategy might have very low EU for some set of parameters, choosing
the wrong strategy can lead to very poor results. On the other hand, once we understand
the parameter con�guration of an intended application domain, Lemmas 1-3 provide useful
tools for focusing the search for an optimal transfer-of-control strategy. The Lemmas can
be used o�-line to substantially reduce the space of strategies that need to be searched to
�nd the optimal strategy. However, in general there may be many strategies and �nding
the optimal strategy may not be possible or feasible.

3.3 Model Predictions for the E-Elves

In this section, we use the model to predict properties of a successful approach to AA in
the E-Elves. Using approximate functions for the probability of response, wait cost, and
expected decision quality, we can calculate the EU of various strategies and determine the
types of strategies that are going to be useful. Armed with this knowledge, we can predict
some key properties of a successful implementation.

A key feature of the E-Elves is that the user is mobile. As she moves around the environ-
ment, her probability of responding to requests for decisions changes drastically, e.g., she is
most likely to respond when at her workstation. To calculate the EU of di�erent strategies,
we need to know P>(t), which means that we need to estimate the response probabilities
and model how they change as the user moves around. When Friday communicates via a
workstation dialog box, the user will respond, on average, in �ve minutes. However, when
Friday communicates via a Palm pilot the average user response time is an hour. Users
generally take longer to decide whether they want to present at a research meeting, taking
approximately two days on average. So, the function P>(t) should have an average value
of 5 minutes when the user in her oÆce, an average of one hour when the user is contacted
via a Palm pilot and an average of two days when the decision is whether to present at a

188

Towards Adjustable Autonomy for the Real World

research meeting. It is also necessary to estimate the relative quality of the user, EQd
U (t),

and Friday's decision making, EQd
A(t). We assume that the user's decision-making EQd

U (t)
is high with respect to Friday's, EQd

A(t). The uncertainty about user intentions makes it
very hard for Friday to consistently make correct decisions about the time at which the user
will arrive at meetings, although its sensors (e.g., GPS device) give some indication of the
user's location. When dealing with more important meetings, the cost of Friday's errors
is higher. Thus, in some cases, the decision-making quality of the user and Friday will be
similar, i.e., EQU

d (t) � EQA
d (t); while in other cases, there will be an order of magnitude

di�erence, i.e., EQU
d (t) � 10�EQA

d (t). The wait cost function,W(t), will be much larger for
big meetings than small and increase rapidly as other attendees wait longer in the meeting
room. Finally, the cost of delays, i.e., Dcost, can vary by about an order of magnitude. In
particular, the cost of rescheduling meetings varies greatly, e.g., the cost of rescheduling
small informal meetings with colleagues is far less than rescheduling a full lecture room at
5 PM Friday.

The parameters laid out above show how parameters vary from decision to decision. For
a speci�c decision, we use Markovian response probabilities (e.g., when the user is in her
oÆce, the average response time is �ve minutes), exponentially increasing wait costs, and
constant decision-making quality (though it changes from decision to decision) to calculate
the EU of interesting strategies. Calculating the EU of di�erent strategies using the values
for di�erent parameters shown above allows us to draw the following conclusions (Table 5
in Section 5.3 presents a quantitative illustration of these predictions):

� The strategy e should not be used, since for all combinations of user location and
meeting importance the EU of this strategy is very low.

� Multiple strategies are required, since for di�erent user locations and meeting impor-
tance di�erent strategies are optimal.

� Since quite di�erent strategies are required when the user is in di�erent locations, the
AA reasoning will need to change strategies when the user changes location.

� No strategy has a reasonable EU for all possible parameter instantiations, hence always
using the same strategy will occasionally cause dramatic failures.

� For most decisions, strategies will end with the agent taking a decision, since strategies
ending with the user in control generally have very low EU.

These predictions provide important guidance about a successful solution for AA in the
E-Elves. In particular, they make clear that the approach must exibly choose between
di�erent strategies and adjust depending on the meeting type and user location.

Section 2.2 described the unsuccessful C4.5 approach to AA in E-Elves and identi�ed
several reasons for the mistakes that occurred. In particular, rigidly transferring control to
one entity and ignoring potential team costs involved in an agent's decision were highlighted
as reasons for the dramatic mistakes in Friday's autonomy reasoning. Reviewing the C4.5
approach in the light of the notion of strategies, we see that Friday learned one strategy and
stuck with that strategy. In particular, originally, Friday would wait inde�nitely for a user
response, i.e., it would follow strategy e, if it had learned to transfer control. As shown later

189

Scerri, Pynadath & Tambe

in Table 5, this strategy has a very low EU. When a �xed-length timeout was introduced,
Friday would follow strategy e(5)A. Such a strategy has high EU when EQU

d (t) � EQA
d (t)

but very low EU when EQU
d (t) � 10 � EQA

d (t). Thus, the model explains a phenomenon
observed in practice.

On the other hand, we can use the model to understand that C4.5's failure in this case
does not mean that it will never be useful for AA. Di�erent strategies are only required
when certain parameters (like probability of response or wait cost) change signi�cantly. In
applications where such parameters do not change dramatically from decision to decision,
one particular strategy may always be appropriate. For such applications, C4.5 might learn
the right strategy just with a small amount of training data and perform acceptably well.

4. Operationalizing Strategies with MDPs

We have formalized the problem of AA as the selection of the transfer-of-control strat-
egy with the highest EU. We now need an operational mechanism that allows an agent to
perform that selection. One major conclusion from the previous section is that di�erent
strategies dominate in di�erent situations, and that applications such as E-Elves will re-
quire mechanism(s) for selecting strategies in a situation-sensitive fashion. In particular,
the mechanism must exibly change strategies as the situation changes. The required mech-
anism must also represent the utility function speci�ed by our expected decision qualities,
EQ, the costs of violating coordination constraints, W, and our coordination-change cost,
Dcost. Finally, the mechanism must also represent the uncertainty of entity responses and
then look ahead over the possible responses (or lack thereof) that may occur in the future.

MDPs are a natural means of performing the decision-theoretic planning required to �nd
the best transfer-of-control strategy. MDP policies provide a mapping between the agent's
state and the optimal transfer of control strategy. By encoding the parameters of the model
of AA strategies into the MDP, the MDP e�ectively becomes a detailed implementation of
the model and, hence, assumes its properties. We can use standard algorithms (Puterman,
1994) to �nd the optimal MDP policy and, hence, the optimal strategies to follow in each
state.

To simplify exposition, as well as to illustrate the generality of the resulting MDP, this
section describes the mapping from AA strategies to the MDP in four subsections. In
particular, Section 4.1 provides a direct mapping of strategies to an abstract MDP. Section
4.2 �lls in state features to enable a more concrete realization of the reward function, while
still maintaining a domain-independent view. Thus, the section completely de�nes a general
MDP for AA is potentially reusable across a broad class of domains. Section 4.3 illustrates
an implemented instantiation of the MDP in E-Elves. Section 4.4 addresses further practical
issues in operationalizing such MDPs in domains such as E-Elves.

4.1 Abstract MDP Representation of AA Problem

Our MDP representation's fundamental state features capture the state of control:

� controlling-entity is the entity that currently has decision-making control.

� ei-response is any response ei has made to the agent's requests for input.

190

Towards Adjustable Autonomy for the Real World

Original State Action Destination State Probability
ectrl time ectrl ei-response time

ej tk ei ei yes tk+1
R tk+1
tk

P ei
> (t)dt

ej tk ei ei no tk+1 1�
R tk+1
tk

P ei
> (t)dt

ei tk wait ei yes tk+1
R tk+1
tk

P ei
> (t)dt

ei tk wait ei no tk+1 1�
R tk+1
tk

P ei
> (t)dt

ei tk D ei no tk �Dvalue 1

Table 2: Transition probability function for AA MDP. ectrl is the controlling-entity.

� time is the current time, typically discretized and ranging from 0 to our deadline,
� | i.e., a set ft0 = 0; t1; t2; : : : ; tn = �g.

If ei-response is not null or if time = �, then the agent is in a terminal state. In the former
case, the decision is the value of ei-response.

We can specify the set of actions for this MDP representation as � = E[fD;waitg. The
set of actions subsumes the set of entities, E, since the agent can transfer decision-making
control to any one of these entities. The D action is the coordination-change action that
changes coordination constraints, as discussed earlier. The \wait" action puts o� transfer-
ring control and making any autonomous decision, without changing coordination with the
team. The agent should reason that \wait" is the best action when, in time, the situation
is likely to change to put the agent in a position for an improved autonomous decision or
transfer-of-control, without signi�cant harm. For example, in the E-Elves domain, at times
closer to a meeting, users can generally make more accurate determinations about whether
they will arrive on time, hence it is sometimes useful to wait when the meeting is a long
time o�.

The transition probabilities (speci�ed in Table 2) represent the e�ects of the actions as
a distribution over their e�ects (i.e., the ensuing state of the world). If, in a state with
time = tk, the agent chooses an action that transfers decision-making control to an entity,
ei, other than the agent itself, the outcome is a state with controlling-entity = ei and
time = tk+1. There are two possible outcomes for ei-response: either the entity responds
with a decision during this transition (producing a terminal state), or it does not, and we
derive the probability distribution over the two from P. The \wait" action has a similar
branch, except that the controlling-entity remains unchanged. Finally, the D action occurs
instantaneously, so there is no time for the controlling entity to respond, but the resulting
state e�ectively moves to an earlier time (e.g., from tk to tk �Dvalue).

We can derive the reward function for this MDP in a straightforward fashion from
our strategy model. Table 3 presents the complete speci�cation of this reward function.
In transitions that take up time, i.e., transferring control and not receiving a response
(Table 3, row 1) or \wait" (Table 3, row 2), the agent incurs the wait cost of that interval.
In transitions where the agent performs D, the agent incurs the cost of that action (Table 3,
row 3). In terminal states with a response from ei, the agent derives the expected quality of
that entity's decision (Table 3, row 4). A policy that maximizes the reward that an agent
expects to receive according to this AA MDP model will correspond exactly to an optimal

191

Scerri, Pynadath & Tambe

controlling-entity time ei-response Action Reward

ej tk no ei W(k + 1)�W(k)
ei tk no wait W(k + 1)�W(k)
ei tk no D Dcost
ei tk yes EQd

ei
(tk)

Table 3: Reward function for AA MDP.

transfer-of-control strategy. Note that this reward function is described in an abstract
fashion|for example, it does not specify how to compute the agent's expected quality of
decision, EQA

d (t).

4.2 MDP Representation of AA Problem within Team Context

We have now given a high-level description of an MDP for implementing the notion of
transfer-of-control strategies for AA. The remainder of this section provides a more detailed
look at the MDP for a broad class of AA domains (including the E-Elves) where the agent
acts on behalf of a user who is �lling a role, �, within the context of a team activity, �.
The reward function compares the EU of di�erent strategies, �nding the optimal one for
the current state. To facilitate this calculation, we need to represent the parameters used
in the model. We introduce the following state features to capture the aspects of the AA
problem in a team context:

� team-orig-expect-� is what the team originally expected of the ful�lling of �.

� team-expect-� is the team's current expectations of what ful�lling the role � implies.

� agent-expect-� is the agent's (probabilistic) estimation for how � will be ful�lled.

� \other � attributes" encapsulate other aspects of the joint activity that are a�ected
by the decision.

When we add these more speci�c features to the generic AA state features already
presented, the overall state, within the MDP representation of a decision d, is a tuple:

hcontrolling-entity; team-orig-expect-�; team-expect-�; agent-expect-�; �-status;
ei-response; time; other � attributesi

For example, for a meeting scenario, team-orig-expect-� could be \Meet at 3pm", team-

expect-� could be \Meet at 3:15pm" after a user requested a delay, and agent-expect-� could
be \Meet at 3:30pm" if the agent believes its user will not make the rescheduled meeting.

The transition probability function for the AA MDP in a team context includes our
underlying AA transition probabilities from Table 3, but it must also include probabilities
over these new state features. In particular, in addition to the temporal e�ect of the
D action described in Section 4.1, there is the additional e�ect on the coordination of �.
The D action changes the value of the team-expect-� feature (in a domain-dependent but

192

Towards Adjustable Autonomy for the Real World

deterministic way). No other actions a�ect the team's expectations. The team-orig-expect-�
feature does not change; we include it to simplify the de�nition of the reward function. The
transition probabilities over agent-expect-� and other �-speci�c features are domain-speci�c.
We provide an example of such transition probabilities in Section 4.3.

The �nal part of the MDP representation is the reward function. Our team AA MDP
framework uses a reward function that breaks down the function from Table 3 as follows:

R(s; a) = f(team-orig-expect-�(s); team-expect-�(s); agent-expect-�(s);

�-status(s); time(s); a) (9)

=
X

e2EnfAg

EQd
e(time(s)) � e-response

��1f1(k team-orig-expect-�(s)� team-expect-�(s) k)

��21f21(time(s))

��22f22(k team-expect-�(s)� agent-expect-�(s) k)

+�3f3(�-status(s)) + �4f4(a)

(10)

The �rst component of the reward function captures the value of getting a response from
a decision-making entity other than the agent itself. Notice that only one entity will actually
respond, so only one e-response will be non-zero. This corresponds to the EQe

d(t) function
used in the model and the bottom row of Table 3. The f1 function reects the inherent
value of performing a role as the team originally expected, hence deterring the agent from
taking costly coordination changes unless they can gain some indirect value from doing
so. This corresponds to Dcost from the mathematical model and the third row of Table 3.
The f21 corresponds to the second row of Table 3, so it represents the wait cost function,
W(t), from the model. This component encourages the agent to keep other team members
informed of the role's status (e.g., by making a decision or taking an explicit D action),
rather than causing them to wait without information. Functions f22 and f3 represent
the quality of the agent's decision, represented by QA

d (t). The standard MDP algorithms
compute an expectation over the agent's reward, and an expectation over this quality will
produce the desired EQA

d (t) from the fourth row of Table 3. The �rst quality function, f22,
reects the value of keeping the team's understanding of how the role will be performed in
accordance with how the agent expects the user to actually perform the role. The agent
receives most reward when the role is performed exactly as the team expects, but because of
the uncertainty in the agent's expectation, errors are possible. f22 represents the costs that
come with such errors. The second quality component, f3, inuences overall reward based
on the successful completion of the joint activity, which encourages the agent to take actions
that maximize the likelihood that the joint activity succeeds. The desire to have the joint
task succeed is implicit in the mathematical model but must be explicitly represented in the
MDP. The component, f4, augments the �rst row from Table 3 to account for additional
costs of transfer-of-control actions. In particular, f4 can be broken down further as follows:

f4(a) =

(
q(e) if a 2 E
0 otherwise

(11)

193

Scerri, Pynadath & Tambe

The function q(e) represents the cost of transferring control to a particular entity, e.g., the
cost of a WAP phone message to a user. Notice, that these detailed, domain-speci�c costs
do not appear directly in the model.

Given the MDP's state space, actions, transition probabilities, and reward function,
an agent can use value iteration to generate a policy P :S!� that speci�es the optimal
action in each state (Puterman, 1994). The agent then executes the policy by taking the
action that the policy dictates in each and every state in which it �nds itself. A policy
may include several transfers of control and coordination-change actions. The particular
series of actions depends on the activities of the user. We can then interpret this policy as
a contingent combination of many transfer-of-control strategies, with the strategy to follow
chosen depending on the user's status (i.e., agent-expect-�).

4.3 Example: The E-Elves MDPs

An example of an AA MDP is the generic delay MDP, which can be instantiated for any
meeting for which Friday may act on behalf of its user. Recall the decision, d, is whether
to let other meeting attendees wait for a user or to begin their meeting. The joint activity,
�, is the meeting in which the agent has the role, �, of ensuring that its user attends the
meeting at the scheduled time. The coordination constraints, �, are that the attendees
arrive at the meeting location simultaneously and the e�ect of the D action is to delay or
cancel the meeting.

In the delay MDP's state representation, team-orig-expect-� is originally-scheduled-

meeting-time, since attendance at the originally scheduled meeting time is what the team
originally expects of the user and is the best possible outcome. team-expect-� is time-

relative-to-meeting, which may increase if the meeting is delayed. �-status becomes status-
of-meeting. agent-expect-� is not represented explicitly; instead, user-location is used as
an observable heuristic of when the user is likely to attend the meeting. For example, a
user who is away from the department shortly before a meeting should begin is unlikely to
be attending on time, if at all. With all the state features, the total state space contains
2800 states for each individual meeting, with the large number of states arising from a very
�ne-grained discretization of time.

The general reward function is mapped to the delay MDP reward function in the fol-
lowing way.

f1 =

(
g(N;�) if N < 4
1 otherwise

(12)

where N is the number of times the meeting is rescheduled and g is a function that takes
into account factors like the number of meeting attendees, the size of the meeting delay and
the time until the originally scheduled meeting time. This function e�ectively forbids the
agent from ever performing 4 or more D actions.

In the delay MDP, the functions, f21 and f22, both correspond to the cost of making the
meeting attendees wait, so we can merge them into a single function, f2. We expect that
such a consolidation is possible in similar domains where the team's expectations relate to

194

Towards Adjustable Autonomy for the Real World

the temporal aspect of role performance.

f2 =

(
h(late; �) if late > 0
0 otherwise

(13)

where late is the di�erence between the scheduled meeting time and the time the user
arrives at the meeting room. late is probabilistically calculated by the MDP based on the
user's current location and a model of the user's behavior.

f3 =

8><
>:

r� + ruser if the user attends
r� if the meeting takes place, but the user does not attend
0 otherwise

(14)

The value, r�, models the inherent value of �, while the value ruser models the user's
individual value to �.

f4 was given previously in Equation 11. The cost of communicating with the user
depends on the medium which is used to communicate. For example, there is higher cost
to communicating via a WAP phone than via a workstation dialog box.

When the users are asked for input, it is assumed that, if they respond, their response
will be \correct", i.e., if a user says to delay the meeting by 15 minutes, we assume the
user will arrive on time for the re-scheduled meeting. If the user is asked while in front of
his/her workstation, a dialog like the one shown in Figure 5 is popped up, allowing the user
to select the action to be taken. The expected quality of the agent's decision is calculated
by considering the agent's proposed decision and the possible outcomes of that decision.
For example, if the agent proposes delaying the meeting by 15 minutes, the calculation of
the decision quality includes the probability and bene�ts that the user will actually arrive
15 minutes after the originally scheduled meeting time, the probability and costs that the
user arrives at the originally scheduled meeting time, etc.

(a) (b)

Figure 5: (a) Dialog box for delaying meetings. (b) A small portion of the delay MDP.

The delay MDP also represents probabilities that a change in user location (e.g., from
oÆce to meeting location) will occur in a given time interval. Figure 5(b) shows a portion

195

Scerri, Pynadath & Tambe

of the state space, showing only the user-response, and user location features. A transition
labeled \delay n" corresponds to the action \delay by n minutes". The �gure also shows
multiple transitions due to \ask" (i.e., transfer control to the user) and \wait" actions, where
the relative probability of each outcome is represented by the thickness of the arrow. Other
state transitions correspond to uncertainty associated with a user's response (e.g., when the
agent performs the \ask" action, the user may respond with speci�c information or may
not respond at all, leaving the agent to e�ectively \wait"). One possible policy produced
by the delay MDP, for a subclass of meetings, speci�es \ask" in state S0 of Figure 5(b)
(i.e., the agent gives up some autonomy). If the world reaches state S3, the policy speci�es
\wait". However, if the agent then reaches state S5, the policy chooses \delay 15", which
the agent then executes autonomously. In terms of strategies, this sequence of actions is
HD.

Earlier, we described another AA decision in the E-Elves, namely whether to close an
auction for an open team role. Here, we briey describe the key aspects of the mapping
of that decision to the MDP. The auction must be closed in time for the user to prepare
for the meeting, but with suÆcient time given for interested users to submit bids and for
the human team leader to choose a particular user. team-orig-expect-�(s) is that a high-
quality presenter be selected with enough time to prepare. There is no D action, hence
team-expect-�(s) = team-orig-expect-�(s). agent-expect-�(s) is whether the agent believes it
has a high-quality bid or believes such a bid will arrive in time for that user to be allocated
to the role. The agent's decision quality, EQd

A(t), is a function of the number of bids that
have been submitted and the quality of those bids, e.g., if all team members have submitted
bids and one user's bid stands out, the agent can con�dently choose that user to do the
presentation. Thus, �-status is primarily the quality of the best bid so far and the di�erence
between the quality of that bid and the second-best bid. The most critical component of
the reward function from Equation 10 is the �2 component, which gives reward if the agent
ful�lls the users' expectation of having a willing presenter do a high-quality presentation.

4.4 User-Speci�ed Constraints

The standard MDP algorithms provide the agent with optimal policies subject to the en-
coded probabilities and reward function. Thus, if the agent designer has access to correct
models of the entities' (e.g., human users in the E-Elves) decision qualities and probabil-
ities of response, then the agent will select the best possible transfer-of-control strategy.
However, it is possible that the entities themselves have more accurate information about
their own abilities than does the agent designer. To exploit this knowledge, an entity could
communicate its model of its quality of decision and probability of response directly to
the agent designer. Unfortunately, the typical entity is unlikely to be able to express its
knowledge in the form of our MDP reward function and transition probabilities. An agent
could potentially learn this additional knowledge on its own through its interactions with
the entities in the domain. However, learning may require an arbitrarily large number of
such interactions, all of which will take place without the bene�t of the entities' inside
knowledge.

As an alternative, we can provide a language of constraints that allows the entities to
directly and immediately communicate their inside information to the agent. Our constraint

196

Towards Adjustable Autonomy for the Real World

Figure 6: Screenshot of the tool for entering constraints. The constraint displayed forbids
not transferring control (i.e., forces transfer) �ve minutes before the meeting if the
teammates have previously been given information about the user's attendance
at the meeting.

language provides the entities a simple way to inform the agent of their speci�c properties
and needs. An entity can use a constraint to forbid the agent from entering speci�c states or
performing speci�c actions in speci�c states. Such constraints can be directly communicated
by a user via the tool shown in Figure 6. For instance, in the �gure shown the user is
forbidding the agent from autonomous action �ve minutes before the meeting. We de�ne
such forbidden-action constraints to be a set, Cfa, where each element constraint is a
boolean function, cfa :S �A!ft; fg. Similarly, we de�ne forbidden-state constraints to
be a set, Cfs, with elements, cfs :S!ft; fg. If a constraint returns t for a particular domain
element (either state or state-action pair, as appropriate), then the constraint applies to the
given element. For example, a forbidden-action constraint, cfa, forbids the action a from
being performed in state s if and only if cfa(s; a) = t.

To provide probabilistic semantics, suitable for an MDP context, we �rst provide some
notation. Denote the probability that the agent will ever arrive in state sf after following

a policy, P , from an initial state si as Pr(si
�
!sf jP). Then, we de�ne the semantics of

a forbidden-state constraint cfs as requiring Pr(si
�
!sf jP) = 0. The semantics given to a

forbidden-action constraint, cfa, is a bit more complex, requiring Pr(si
�
!sf P̂ (sf)=ajP) = 0

(i.e., cfa forbids the agent from entering state sf and then performing action a). In some
cases, an aggregation of constraints may forbid all actions in state sf . In this case, the
conjunction allows the agent to still satisfy all forbidden-action constraints by avoiding sf
(i.e., the state sf itself becomes forbidden). Once a state, sf , becomes indirectly forbidden
in this fashion, any action that potentially leads the agent from an ancestor state into
sf likewise becomes forbidden. Hence, the e�ect of forbidding constraints can propagate
backward through the state space, a�ecting state/action pairs beyond those which cause
immediate violations.

197

Scerri, Pynadath & Tambe

The forbidding constraints are powerful enough for the entity to communicate a wide
range of knowledge about their decision quality and probability of response to the agent.
For instance, some E-Elves users have forbidden their agents from rescheduling meetings
to lunch time. To do so, the users provide a feature speci�cation of the states they want
to forbid, such as meeting-time=12 PM. Such a speci�cation generates a forbidden-state
constraint, cfs, that is true in any state, s, where meeting-time=12 PM in s. This constraint
e�ectively forbids the agent from performing any D action that would result in a state where
meeting-time=12PM. Similarly, some users have forbidden autonomous actions in certain
states by providing a speci�cation of the actions they want to forbid, e.g., action 6=\ask".
This generates a forbidden-action constraint, cfa, that is true for any state/action pair,
(s; a), with a 6=\ask". For example, a user might specify such a constraint for states
where they are in their oÆce, at the time of a meeting because they know that they will
always make decisions in that case. Users can easily create more complicated constraints
by specifying values for multiple features, as well as by using comparison functions other
than = (e.g., 6=, >).

Analogous to the forbidding constraints, we also introduce required-state and required-
action constraints, de�ned as sets, Crs and Cra, respectively. The interpretation provided
to the required-state constraint is symmetric, but opposite to that of the forbidden-state
constraint: Pr(si

�
!sf jP) = 1. Thus, from any state, the agent must eventually reach a

required state, sf . Similarly, for the required-action constraint, Pr(si
�
!sf^P (sf)=ajP) = 1.

The users specify such constraints as they do for their forbidding counterparts (i.e., by spec-
ifying the values of the relevant state features or action, as appropriate). In addition, the
requiring constraints also propagate backward. Informally, the forbidden constraints focus
locally on speci�c states or actions, while the required constraints express global properties
over all states.

The resulting language allows the agent to exploit synergistic interactions between its
initial model of transfer-of-control strategies and entity-speci�ed constraints. For example,
a forbidden-action constraint that prevents the agent from taking autonomous action in a
particular state is equivalent to the user specifying that the agent must transfer control to
the user in that state. In AA terms, the user instructs the agent not to consider any transfer-
of-control strategies that violate this constraint. To exploit this pruning of the strategy
space by the user, we have extended standard value iteration to also consider constraint
satisfaction when generating optimal strategies. Appendix II provides a description of a
novel algorithm that �nds optimal policies while respecting user constraints. The appendix
also includes a proof of the algorithm's correctness.

5. Experimental Results

This section presents experimental results aimed at validating the claims made in the previ-
ous sections. In particular, the experiments aim to show the utility of complex transfer-of-
control strategies and the e�ectiveness of MDPs as a technique for their operationalization.
Section 5.1 details the use of the E-Elves in daily activities and Section 5.2 discusses the
pros and cons of living and working with the assistance of Fridays. Section 5.3 shows some
characteristics of strategies in this type of domain (in particular, that di�erent strategies

198

Towards Adjustable Autonomy for the Real World

are used in practice). Finally, Section 5.4 describes detailed experiments that illustrate
characteristics of the AA MDP.

5.1 The E-Elves in Daily Use

The E-Elves system was heavily used by ten users in a research group at ISI, between June
2000 and December 2000.5 The Friday agents ran continuously, around the clock, seven
days a week. The exact number of agents running varied over the period of execution, with
usually �ve to ten Friday agents for individual users, a capability matcher (with proxy),
and an interest matcher (with proxy). Occasionally, temporary Friday agents operated on
behalf of special guests or other short-term visitors.

0

50

100

150

200

250

300

Jun Jul Aug Sep Oct Nov Dec

N
o.

 o
f M

es
sa

ge
s

Date

Daily Counts of Exchanged Messages

Figure 7: Number of daily coordination messages exchanged by proxies over a seven-month
period.

Figure 7 plots the number of daily messages exchanged by the Fridays over seven months
(June through December, 2000). The size of the daily counts reects the large amount of
coordination necessary to manage various activities, while the high variability illustrates
the dynamic nature of the domain (note the low periods during vacations and �nal exams).
Figure 8(a) illustrates the number of meetings monitored for each user. Over the seven
months, nearly 700 meetings where monitored. Some users had fewer than 20 meetings,
while others had over 250. Most users had about 50% of their meetings delayed (this includes
regularly scheduled meetings that were cancelled, for instance due to travel). Figure 8(b)
shows that usually 50% or more of delayed meetings were autonomously delayed. In this
graph, repeated delays of a single meeting are counted only once. The graphs show that the

5. The user base of the system was greatly reduced after this period due to personnel relocations and

student graduations, but it remains in use with a smaller number of users.

199

Scerri, Pynadath & Tambe

0
50

100
150
200
250
300
350
400

ku
lk

ar
ni

ju
ng

h

m
od

i

py
na

da
th

sc
er

ri

na
ir

ta
m

be

ra
m

an
an ito

N
um

be
r

of
 M

ee
tin

gs

Users

Meetings Monitored vs. Meetings Delayed

Monitored
Delayed

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

N
um

be
r

of
 M

ee
tin

gs

Users

User Delays vs. Autonomous Delays

Total Delays
Human Delays

(a) (b)

Figure 8: (a) Monitored vs. delayed meetings per user. (b) Meetings delayed autonomously
vs. by hand.

agents are acting autonomously in a large number of instances, but, equally importantly,
humans are also often intervening, indicating the critical importance of adjustable autonomy
in Friday agents.

For a seven-month period, the presenter for USC/ISI's TEAMCORE research group
presentations was decided using auctions. Table 4 shows a summary of the auction results.
Column 1 (\Date") shows the dates of the research presentations. Column 2 (\No. of
Bids") shows the total number of bids received before a decision. A key feature is that
auction decisions were made without all 9 users entering bids; in fact, in one case, only
4 bids were received. Column 3 (\Best bid") shows the winning bid. A winner typically
bid < 1; 1 >, i.e., indicating that the user it represents is both capable and willing to
do the presentation | a high-quality bid. Interestingly, the winner on July 27 made a
bid of < 0; 1 >, i.e., not capable but willing. The team was able to settle on a winner
despite the bid not being the highest possible, illustrating its exibility. Finally, columns
4 (\Winner") and 5 (\Method") show the auction outcome. An `H' in column 5 indicates
the auction was decided by a human, an `A' indicates it was decided autonomously. In �ve
of the seven auctions, a user was automatically selected to be presenter. The two manual
assignments were due to exceptional circumstances in the group (e.g., a �rst-time visitor),
again illustrating the need for AA.

Date No. of bids Best bid Winner Method

Jul 6, 2001 7 1,1 Scerri H

Jul 20, 2001 9 1,1 Scerri A

Jul 27, 2001 7 0,1 Kulkarni A

Aug 3, 2001 8 1,1 Nair A

Aug 3, 2001 4 1,1 Tambe A

Sept 19, 2001 6 -,- Visitor H

Oct 31, 2001 7 1,1 Tambe A

Table 4: Results for auctioning research presentation slot.

200

Towards Adjustable Autonomy for the Real World

5.2 Evaluating the Pros and Cons of E-Elves Use

The general e�ectiveness of the E-Elves is shown by several observations. During the
E-Elves' operation, the group members exchanged very few email messages to announce
meeting delays. Instead, Fridays autonomously informed users of delays, thus reducing the
overhead of waiting for delayed members. Second, the overhead of sending emails to recruit
and announce a presenter for research meetings was assumed by agent-run auctions. Third,
a web page, where Friday agents post their users' location, was commonly used to avoid
the overhead of trying to track users down manually. Fourth, mobile devices kept users
informed remotely of changes in their schedules, while also enabling them to remotely delay
meetings, volunteer for presentations, order meals, etc. Users began relying on Friday so
heavily to order lunch that one local \Subway" restaurant owner even suggested: \. . .more

and more computers are getting to order food. . . so we might have to think about marketing
to them!!". Notice that this daily use of the E-Elves by a number of di�erent users occurred
only after the MDP implementation of AA replaced the unreliable C4.5 implementation.

However, while the agents ensured that users spent less time on daily coordination (and
miscoordination), there was a price to be paid. One issue was that users felt they had
less privacy when their location was continually posted on the web and monitored by their
agent. Another issue was the security of private information such as credit card numbers
used for ordering lunch. As users adjusted to having agents monitor their daily activities,
some users adjusted their own behavior around that of the agent. One example of such
behavior was some users preferring to be a minute or two early for a meeting lest their
agent decide they were late and delay the meeting. In general, since the agents never made
catastrophically bad decisions most users felt comfortable using their agent and frequently
took advantage of its services.

The most emphatic evidence of the success of the MDP approach is that, since replacing
the C4.5 implementation, the agents have never repeated any of the catastrophic mistakes
enumerated in Section 2.2. In particular, Friday avoids errors such as error 3 from Section
2.2 by selecting a strategy with a single, large D action, because it has a higher EU than a
strategy with many small Ds (e.g., DDDD). Friday avoids error 1, because the large cost
associated with an erroneous cancel action signi�cantly penalizes the EU of a cancellation.
Friday instead chooses the higher-EU strategy that �rst transfers control to a user before
taking such an action autonomously. Friday avoids errors such as errors 2 and 4 by selecting
strategies in a situation-sensitive manner. For instance, if the agent's decision-making
quality is low (i.e., high risk), then the agent can perform a coordination-change action to
allow more time for user response or for the agent itself to get more information. In other
words, it exibly uses strategies like eDeA, rather than always using the e(5)A strategy
discussed in Section 2.2. This indicates that a reasonably appropriate strategy was chosen
in each situation. Although the current agents do occasionally make mistakes, these errors
are typically on the order of transferring control to the user a few minutes earlier than may
be necessary. Thus, the agents' decisions have been reasonable, though not always optimal.6

6. The inherent subjectivity in user feedback makes a determination of optimality diÆcult.

201

Scerri, Pynadath & Tambe

5.3 Strategy Evaluation

The previous section looked at the application of the MDP approach to the E-Elves but did
not address strategies in particular. In this section, we speci�cally examine strategies in the
E-Elves. We show that Fridays did indeed follow strategies and that the strategies followed
were the ones predicted by the model. We also show how the model led to an insight that,
in turn, led to a dramatic simpli�cation in one part of the implementation. Finally, we show
that the use of strategies is not limited to the E-Elves application by showing empirically
that, for random con�gurations of entities, the optimal strategy will have more than one
transfer-of-control action in 70% of cases.

Figure 9 shows a frequency distribution of the number of actions taken per meeting
(this graph omits \wait" actions). The number of actions taken for a meeting corresponds
to the length of the part of the strategy followed (the strategy may have been longer, but
a decision was made so the actions were not taken). The graph shows both that the MDP
followed complex strategies in the real world and that it followed di�erent strategies at
di�erent times. The graph bears out the model's predictions that di�erent strategies would
be required of a good solution to the AA problem in the E-Elves domain.

Table 5 shows the EU values computed by the model and the strategy selected by
the MDP. Recall that the MDP explicitly models the users' movements between locations,
while the model assumes that the users do not move. Hence, in order to do an accurate
comparison between the model and the MDP's results, we focus on only those cases when
the user's location does not change (i.e., where the probability of response is constant).
These EU values were calculated using the parameter values set out in Section 3.3. Notice,
that the MDP will often perform Ds before transferring control to buy time to reduce
uncertainty. The model is an abstraction of the domain, so such D actions, like changes
in user location, are not captured. Except for a slight discrepancy in the �rst case the
match between the MDP's behavior and the model's predictions is exact, provided that we
ignore the D actions at the beginning of some MDP strategies. Thus, despite the model
being considerably abstracted from the domain there is high correlation between the MDP
policies and the model's suggested strategies. Moreover, general properties of the policies
that were predicted by the model were borne out exactly. In particular, recall that the model
predicted di�erent strategies would be required, that strategy e would not be used, and that
generally strategies ending in A would be best | all properties of the MDP policies.

The model predicts that if parameters do not vary greatly then it is suÆcient to �nd
a single optimal strategy and follow that strategy in each situation. The MDP for the
decision to close an auction is an instance of this for the E-Elves. The same pattern of
behavior is followed every time an open role needs to be �lled by the team. This consistency
arises because the wait cost is the same (since the meetings are the same) and because
the pattern of incoming bids is reasonably consistent (variations in individuals' behavior
cancel each other out when we look at the team as a whole). The model predicts that
when parameters do not change, we can �nd the optimal strategy for those parameters
and execute that strategy every time. However, since the MDP had worked e�ectively for
the meeting AA, an MDP was also chosen for implementing the auction AA. When it was
realized that the parameters do not vary greatly, we concluded the MDP could be replaced
with a simple implementation of the optimal strategy. To verify this hypothesis, we replaced

202

Towards Adjustable Autonomy for the Real World

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12

N
o.

 o
f m

ee
tin

gs

No. of actions

No. of actions per meeting

Figure 9: The frequency distribution of the number of steps taken in an AA strategy for
the meeting scenario. If no actions were taken for a meeting, the meeting was
cancelled before Friday started AA reasoning.

Location A e eA eDA MDP

Small meeting, active participant

oÆce 14.8 -277 41.9 42.05 DDeDA
not @ dept. 14.8 -6E7 31.4 28.0 DDeA
@ meet loc. 14.8 -2E5 39.2 39.1 eA

Large meeting, passive participant

oÆce 14.6 -7E12 30.74 30.65 DDeA
not @ dept. 14.6 -2E17 14.6 7.7 DDeA
@ meet loc. 14.5 -7E14 25.1 23.5 eA

Table 5: EU values for the simple strategies as calculated from the model. The last column
shows the strategy actually followed by the MDP.

203

Scerri, Pynadath & Tambe

Date No. Bids MDP eA

7/20/00 9 25% 26%
7/27/00 7 14% 20%
8/3/00 8 29% 23%

Table 6: Auction results. The \MDP" column shows the percentage of available auction
time remaining when the MDP chose to close the auction. The \eA" column
shows the percentage of available auction time remaining when the strategy eA,
with EQd

e(t) proportional to the number of bids received (\No. Bids" column),
would have closed the auction.

the general MDP code with three simple lines of code implementing the eA strategy, which
we determined to be optimal for the particular parameters of the problem. Using log �les
recorded during the actual auctions reported in (Scerri, Pynadath, & Tambe, 2001), we
experimentally veri�ed that both the MDP and the eA strategy produced the same result.
Table 6 shows the percentage of available auction time remaining (e.g., if the auction was
opened four days before the role should be performed, closing the auction one day before
would correspond to 25%) when the MDP version and the eA version of the code closed
the auction. The number of bids is used to estimate the agent's expected decision quality.
The timing of the auction closing is close, certainly within just a few hours. The result
is not precisely the same for the MDP and strategy implementations, because the MDP
implementation was more reactive to incoming bids than the strategy implementation.

To con�rm that the need for strategies was not a phenomenon unique to the particular
settings of the E-Elves, an experiment was run with randomly generated con�gurations
of entities. The wait cost for each con�guration increased exponentially, with the rate of
accrual varying from con�guration to con�guration. The con�gurations contained between
3 and 25 entities, with randomly chosen Markovian response probabilities and randomly
chosen, but constant, decision-making quality. The cost and value of a D action was also
randomly selected. In each con�guration, there was an agent that could respond instantly,
but with lower decision quality than any of the other entities. For each con�guration, the
optimal transfer-of-control strategy was found. Figure 10(a) shows the percentage of optimal
strategies (z-axis) that were of each length (y-axis \jOpt. Strat.j"), separated according to
the rate at which wait costs accrued (x-axis, \Wait Cost Param"). The �gure shows that
if the rate at which the wait cost accrues is very low, most optimal strategies are of length
one, with the agent just handing control to the entity with the highest decision-making
quality. When the rate of wait cost accrual is high, most strategies are of length two,
with the agent briey giving the best decision maker an opportunity to make the decision
but taking back control and acting before the wait costs became too high. For intermediate
values of the wait cost parameter, there was considerably more variation in the length of the
optimal strategy. Figure 10(b) shows the percentage of optimal strategies for each length
when the wait cost parameter is 0.12 (i.e., a slice through Figure 10(a)). Hence, strategies
often contained several transfers of control and several coordination changes. Thus, this
experiment shows that complex transfer-of-control strategies are useful, not only in E-Elves,

204

Towards Adjustable Autonomy for the Real World

but in a range of domains, especially those in which wait costs are neither negligible nor
accruing too fast.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Wait Cost Param

1
2

3
4

5
6

7
8

|Opt. Strat.|

0
10
20
30
40
50
60
70
80
90

100

% of Opt. Strats.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

%
 o

f O
pt

. S
tr

at
s.

|Opt. Strat.|

Strategy Lengths for w = 0.12

(a) (b)

Figure 10: (a) Percentage of optimal strategies having a certain length, broken down ac-
cording to how fast wait costs are accruing. (b) Percentage of optimal strategies
having certain length for wait cost parameter = 0.12.

Thus, we have shown that the MDP produces strategies and that Friday follows these
strategies in practice. Moreover, the strategies followed are the ones predicted by the model.
Of practical use, when we followed a prediction of the model, i.e., that an MDP was not
required for auctions, we were able to substantially reduce the complexity of one part of the
system. Finally, we showed that the need for strategies was not speci�cally a phenomenon
of the E-Elves domain.

5.4 MDP Experiments

Experience using the MDP approach to AA in the E-Elves indicates that it is e�ective
at making reasonable AA decisions. However, in order to determine whether MDPs are
a generally useful tool for AA reasoning, more systematic experiments are required. In
this section, we present such systematic experiments to determine important properties of
MDPs for AA. The MDP reward function is designed to result in the optimal strategy being
followed in each state.

In each of the experiments, we vary one of the � parameters that are the weights of the
di�erent factors in Equation 10. The MDP is instantiated with each of a range of values
for the parameter and a policy produced for each value. In each case, the total policy is
de�ned over 2800 states. The policy is analyzed to determine some basic properties of that
policy. In particular, we counted the number of states in which the policy speci�es to ask,
to delay, to say the user is attending and to say the user is not attending. The statistics
show broadly how the policy changes as the parameters change, e.g., whether Friday gives
up autonomy more or less when the cost of a coordination change is increased. The �rst
aim of the experiments is to simply con�rm that policies change in the desired and expected
way when parameters in the reward function are changed. For instance, if Friday's expected
decision quality is increased, there should be more states where it makes an autonomous

205

Scerri, Pynadath & Tambe

decision. Secondly, from a practical perspective it is critical to understand how sensitive the
MDP policies are to small variations in parameters, because such sensitivity would mean
that any small variations in parameter values can signi�cantly impact MDP performance.
Finally, the experiments reveal some interesting phenomena.

The �rst experiment looks at the e�ect of the �1 parameter from Equation 10, repre-
sented in the delay MDP implementation by the team repair cost (function g from Equation
12), on the policies produced by the delay MDP. This parameter determines how averse Fri-
day should be to changing coordination constraints. Figure 11 shows how some properties
of the policy change as the team repair cost value is varied. The x-axis gives the value of
the team repair cost, and the y-axis gives the number of times that action appears in the
policy. Figure 11(a) shows the number of times Friday will ask the user for input. The
number of times it will transfer control exhibits an interesting phenomenon: the number
of asks has a maximum at an intermediate value for the parameter. For the low values,
Friday can \con�dently" (i.e., its decision quality is high) make decisions autonomously,
since the cost of errors is low, hence there is less value to relinquishing autonomy. For
very high team repair costs, Friday can \con�dently" decide autonomously not to make a
coordination change. It is in the intermediate region that Friday is uncertain and needs
to call on the user's decision making more often. Furthermore, as the cost of delaying the
meeting increases, Friday will delay the meeting less (Figure 11(b)) and tell the team the
user is not attending more often (Figure 11(d)). By doing so, Friday gives the user less time
to arrive at the meeting, choosing instead to just announce that the user is not attending.
Essentially, Friday's decision quality has become close enough to the user's decision quality
that asking the user is not worth the risk that they will not respond and the cost of asking
for their input. Except for a jump between a value of zero and any non-zero value, the
number of times Friday says the user is attending does not change (Figure 11(c)). The
delay MDP in use in the E-Elves has the team repair cost parameter set at two. Around
this value the policy changes little, hence slight changes in the parameter do not lead to
large changes in the policy.

In the second experiment, we vary the �2 parameter from Equation 10, implemented
in the delay MDP by the variable team wait cost (function h from Equation 13). This is
the factor that determines how heavily Friday should weigh di�erences between how the
team expects the user will ful�ll the role and how the user will actually ful�ll the role. In
particular, it determines the cost of having other team members wait in the meeting room
for the user. Figure 12 shows the changes to the policy when this parameter is varied (again
the x-axis shows the value of the parameter and the y-axis shows the number of times the
action appears in the policy). The graph of the number of times the agent asks in the
policy (Figure 12(a)), exhibits the same phenomena as when the �1 parameter was varied,
i.e., increasing and then decreasing as the parameter increases. The graphs show that, as
the cost of teammates' time increases, Friday acts autonomously more often (Figure 12(b-
d)). Friday asks whenever the potential costs of asking are lower than the potential costs
of errors it makes { as the cost of time waiting for a user decision increases, the balance
tips towards acting. Notice that the phenomenon of the number of asks increasing then
decreasing occurs in the same way that it did for the �1 parameter; however, it occurs for a
slightly di�erent reason. In this case, when waiting costs are low, Friday's decision-making
quality is high so it acts autonomously. When the waiting costs are high, Friday cannot

206

Towards Adjustable Autonomy for the Real World

48
50
52
54
56
58
60
62
64
66
68

0 2 4 6 8 10

as

ks

"Team repair cost" weight

Number of asks in policy

30
40
50
60
70
80
90

100
110
120
130
140

0 2 4 6 8 10

de

la
ys

"Team repair cost" weight

Number of delays in policy

(a) (b)

90
95

100
105
110
115
120
125
130
135
140

0 2 4 6 8 10

at

te
nd

in
g

"Team repair cost" weight

Number of Attending messages in policy

0
10
20
30
40
50
60
70

0 2 4 6 8 10

N

ot
 A

tte
nd

in
g

"Team repair cost" weight

Number of Not Attending messages in policy

(c) (d)

Figure 11: Properties of the MDP policy as team repair cost is varied.

207

Scerri, Pynadath & Tambe

a�ord the risk that the user will not respond quickly, so it again acts autonomously (despite
its decision quality being low). Figure 12(b) shows that the number of delay actions taken
by Friday increases, but only in states in which the meeting has already been delayed twice.
This indicates that the normally very expensive third delay of the same meeting starts to
become worthwhile if the cost of having teammates wait in the meeting room is very high.
In the delay MDP, a value of 1 is used for �2. The decision to transfer control (i.e., ask)
is not particularly sensitive to changes in the parameter around this value|again, slight
changes will not have a signi�cant impact.

20

30

40

50

60

70

0 2 4 6 8 10

as

ks

"Cost of teammates time" weight

Number of Asks in policy

0

20

40

60

80

100

120

0 2 4 6 8 10

de

la
ys

"Cost of teammates time" weight

Number of Delays in policy

Total
1st Delay

2nd Delay
3rd Delay

(a) (b)

80
100
120
140
160
180
200
220
240
260

0 2 4 6 8 10

A

tte
nd

in
g

"Cost of teammates time" weight

Number of Attending messages in policy

0

5

10

15

20

25

30

0 2 4 6 8 10

N

ot
 A

tte
nd

in
g

"Cost of teammates time" weight

Number of Not Attending messages in policy

(c) (d)

Figure 12: Properties of the MDP policy as teammate time cost is varied. (b) shows the
number of times the meeting is delayed in states where it has not yet been
delayed, where it has been delayed once already, and where it has been delayed
twice already.

In the third experiment, the value of the �3, the weight of the joint task, was varied
(Figure 13). In the E-Elves, the value of the joint task includes the value of the user to the
meeting and the value of the meeting without the user. In this experiment, the value of the

208

Towards Adjustable Autonomy for the Real World

meeting without the user is varied. Figure 13 shows how the policy changes as the value of
the meeting without the user changes (again the x-axis shows the value of the parameter
and the y-axis shows the number of times the action appears in the policy). These graphs
show signi�cantly more instability than for the other � values. These large changes are a
result of the simultaneous change in both the utility of taking key actions and the expected
quality of Friday's decision making, e.g., the utility of saying the user is attending is much
higher if the meeting has very low value without that user. In the current delay MDP, this
value is set at 0.25, which is in a part of the graph that is very insensitive to small changes
of the parameter.

In the three experiments above, the speci�c E-Elves parameters were in regions of the
graph where small changes in the parameter do not lead to signi�cant changes in the policy.
However, there were regions of the graphs where the policy did change dramatically for small
changes in a parameter. This indicates that in some domains, with parameters di�erent to
those in E-Elves, the policies will be sensitive to small changes in the parameters.

0
20
40
60
80

100
120
140
160
180

-10 -8 -6 -4 -2 0 2

as

ks

Joint activity weight

Number of asks in policy

20

40

60

80

100

120

-10 -8 -6 -4 -2 0 2

de

la
ys

Joint activity weight

Number of delays in policy

(a) (b)

100

120

140

160

180

200

-10 -8 -6 -4 -2 0 2

at

te
nd

in
g

Joint activity weight

Number of Attending messages in policy

0

5

10

15

20

-10 -8 -6 -4 -2 0 2

no

t a
tte

nd
in

g

Joint activity weight

Number of Not Attending messages in policy

(c) (d)

Figure 13: Properties of the MDP policy as the importance of a successful joint task is
varied.

209

Scerri, Pynadath & Tambe

The above experiments show three important properties of the MDP approach to AA.
First, changing the parameters of the reward function generally lead to the changes in the
policy that are expected and desired. Second, while the value of the parameters inuenced
the policy, the e�ect on the AA reasoning was often reasonably small, suggesting that small
errors in the model should not a�ect users too greatly. Finally, the interesting phenomena of
the number of asks reaching a peak at intermediate values of the parameters was revealed.

The three previous experiments have examined how the behavior of the MDP changes
as the parameters of the reward function are changed. In another experiment, a central
domain-level parameter a�ecting the behavior of the MDP, i.e., the probability of getting a
user response and the cost of getting that response (corresponding to f4), is varied. Figure
14 shows how the number of times Friday chooses to ask (y-axis) varies with both the
expected time to get a user response (x-axis) and the cost of doing so (each line on the
graph represents a di�erent cost). The MDP performs as expected, choosing to ask more
often if the cost of doing so is low and/or it is likely to get a prompt response. Notice
that, if the cost is low enough, Friday will sometimes choose to ask the user even if there
is a long expected response time. Conversely, if the expected response time is suÆciently
high, Friday will assume complete autonomy. This graph also shows that there is a distinct
change in the number of asks at some point (depending on the cost), but outside this change
point the graphs are relatively at. The key reason for the fairly rapid change in the number
of asks is that often the di�erence between the quality of Friday's and the user's decision
making is in a fairly small range. As the mean response time increases, the expected wait
costs increase, eventually becoming high enough for Friday to decide to act autonomously
instead of asking.

0
10
20
30
40
50
60
70

0.01 0.1 1 10 100

A

sk
s

Mean Response Time

Number of Asks in Policy

Cost = 0.0001
Cost = 0.2
Cost = 1.0

Figure 14: Number of ask actions in policy as the mean response time (in minutes) is varied.
The x-axis uses a logarithmic scale.

We conclude this section with a quantitative illustration of the impact constraints have
on strategy selection. In this experiment, we merged user-speci�ed constraints from all the
E-Elves users, resulting in a set of 10 distinct constraints. We started with an unconstrained

210

Towards Adjustable Autonomy for the Real World

Figure 15: (a) Number of possible strategies (logarithmic). (b) Time required for strategy
generation.

instance of the delay MDP and added these constraints one at a time, counting the strategies
that satis�ed the applied constraints. We then repeated these experiments on expanded
instances of the delay MDP, where we increased the initial state space by increasing the
frequency of decisions (i.e., adding values to the time-relative-to-meeting feature). This
expansion results in three new delay MDPs, which are arti�cial, but are inuenced by the
real delay MDP. Figure 15a displays these results (on a logarithmic scale), where line A
corresponds to the original delay MDP (2760 states), and lines B (3320 states), C (3880
states), and D (4400 states) correspond to the expanded instances. Each data point is a
mean over �ve di�erent orderings of constraint addition. For all four MDPs, the constraints
substantially reduce the space of possible agent behaviors. For instance, in the original
delay MDP, applying all 10 constraints eliminated 1180 of the 2760 original states from
consideration, and reduced the mean number of viable actions per acceptable state from
3.289 to 2.476. The end result is a 50% reduction in the size (log10) of the strategy space.
On the other hand, constraints alone did not provide a complete strategy, since all of the
plots stay well above 0, even with all 10 constraints. Since none of the individual users were
able/willing to provide 10 constraints, we cannot expect anyone to add enough constraints
to completely specify an entire strategy. Thus, the MDP representation and associated
policy selection algorithms are still far from redundant.

The constraints' elimination of behaviors also decreases the time required for strategy
selection. Figure 15b plots the total time for constraint propagation and value iteration over
the same four MDPs as in Figure 15a (averaged over the same �ve constraint orderings).
Each data point is also a mean over �ve separate iterations, for a total of 25 iterations
per data point. The values for the zero-constraint case correspond to standard value itera-
tion without constraints. The savings in value iteration over the restricted strategy space
dramatically outweigh the cost of pre-propagating the additional constraints. In addition,
the savings increase with the size of the MDP. For the original delay MDP (A), there is
a 28% reduction in policy-generation time, while for the largest MDP (D), there is a 53%
reduction. Thus, the introduction of constraints can provide dramatic acceleration of the
agent's strategy selection.

211

Scerri, Pynadath & Tambe

6. Related Work

We have discussed some related work in Section 1. This section adds to that discussion.
In Section 6.1, we examine two representative AA systems { where detailed experimental
results have been presented { and explain those results via our model. This illustrates the
potential applicability of our model to other systems. In Section 6.2, we examine other AA
systems and other areas of related work, such as meta-reasoning, conditional planning and
anytime algorithms.

6.1 Analyzing Other AA Work Using the Strategy Model

Goodrich, Olsen, Crandall, and Palmer (2001) report on tele-operated teams of robots,
where both the user's high-level reasoning and the robots' low-level skills are required to
achieve some task. Within this domain, they have examined the e�ect of user neglect on
robot performance. The idea of user neglect is similar to our idea of entities taking time
to make decisions; in this case, if the user \neglects" the robot, the joint task takes longer
to perform. In this domain, the coordination constraint is that user input must arrive so
that the robot can work out the low-level actions it needs to perform. Four control systems
were tested on the robot, each giving a di�erent amount of autonomy to the robot, and the
performance was measured as user neglect was varied.

Although quite distinct from the E-Elves system, mapping Goodrich's team of robots
to our AA problem formulation provides some interesting insights. This system has the
interesting feature that the entity the robot can call on for a decision, i.e., the user, is also
part of the team. Changing the autonomy of the robot e�ectively changes the nature of
the coordination constraints between the user and robot. Figure 16 shows the performance
(y-axis) of the four control policies as the amount of user neglect was increased (x-axis).
The experiments showed that higher robot autonomy allowed the operator to \neglect" the
robot more without as serious an impact on its performance.

The notion of transfer-of-control strategies can be used to qualitatively predict the same
behavior as was observed in practice, even though Goodrich et al. (2001) did not use the
notion of strategies. The lowest autonomy control policy used by Goodrich et al. (2001)
was a pure tele-operation one. Since the robot cannot resort to its own decision making,
we represent this control policy with a strategy U , i.e., control inde�nitely in the hands
of the user. The second control policy allows the user to specify waypoints and on-board
intelligence works out the details of getting to the waypoints. Since the robot has no high-
level decision-making ability, the strategy is simply to give control to the user. However,
since the coordination between the robot and user is more abstract, i.e., the coordination
constraints are looser, the wait cost function is less severe. Also the human is giving less
detailed guidance than in the fully tele-operated case (which is not as good according to
(Goodrich et al., 2001)), hence we use a lower value for the expected quality of the user
decision. We denote this approach Uwp to distinguish it from the fully tele-operated case.
The next control policy allows the robot to choose its own waypoints given that the user
inputs regions of interest. The robot can also accept waypoints from the user. The ability
for the robot to calculate waypoints is modeled as a D, since it e�ectively changes the
coordination between the entities, by removing the user's need to give waypoints. We model
this control policy as the strategy UDU . The �nal control policy is full autonomy, i.e., A.

212

Towards Adjustable Autonomy for the Real World

wp

Performance

Neglect

A

UDU

UU

(a)

-60

-40

-20

0

20

40

60

00.511.52

E
U

p

Goodrich robot operation EU

(b)

Figure 16: Goodrich at al's various control strategies plotted against neglect. (a) Experi-
mental results. Thinner lines represent control systems with more intelligence
and autonomy. (b) Results theoretically derived from model of strategies pre-
sented in this article (p is the parameter to the probability of response function).

Robot decision making is inferior to that of the user, hence the robot's decision quality is less
than the user's. The graphs of the four strategies, plotted against the probability of response
parameter (getting smaller to the right, to match \neglect" in the Goodrich et al graph) is
shown in Figure 16. Notice that the shape of the graph theoretically derived from our model,
shown in Figure 16(b), is qualitatively the same as the shape of the experimentally derived
graph, Figure 16(a). Hence, the theory predicted qualitatively the same performance as
was found from experimentation.

A common assumption in earlier AA work has been that if any entity is asked for a
decision it will make that decision promptly, hence strategies handling the contingency

213

Scerri, Pynadath & Tambe

of a lack of response have not been required. For example, Horvitz's (1999) work using
decision theory is aimed at developing general, theoretical models for AA reasoning for a
user at a workstation. A prototype system, called LookOut, for helping users manage their
calendars has been implemented to test these ideas (Horvitz, 1999). Although such systems
are distinctly di�erent from E-Elves, mapping them to our problem formulation allows us to
analyze the utility of the approaches across a range of domains without having to implement
the approach in those domains.

A critical di�erence between Horvitz's work and our work is that LookOut does not
address the possibility of not receiving a (timely) response. Thus, complex strategies are
not required. In the typical case for LookOut, the agent has three options: to take some
action, not to take the action, or to engage in dialog. The central factor inuencing the
decision is whether the user has a particular goal that the action would aid, i.e., if the user
has the goal, then the action is useful, but if he/she does not have the goal, the action is
disruptive. Choosing to act or not to act corresponds to pursuing strategy A.7 Choosing
to seek user input corresponds to strategy U . Figure 17(a) shows a graph of the di�erent
options plotted against the probability the user has the goal (corresponds to Figure 6 in
Horvitz (1999)). The agent's expected decision quality, EQd

A(t) is derived from Equation
2 in Horvitz (1999). (In other words, Horvitz's model performs more detailed calculations
of expected decision quality.) Our model then predicts the same selection of strategies as
Horvitz does, i.e., choosing strategy A when EQd

A(t) is low, U otherwise (assuming that
only those two strategies are available). However, our model further predicts something
that Horvitz did not consider, i.e., that if the rate at which wait costs accrue becomes
non-negligible then the choice is not as simple. Figure 17(b) shows how the EU of the two
strategies changes as the rate of wait costs accruing is increased. The fact that the optimal
strategy varies with wait cost suggests that Horvitz's approach would not immediately be
appropriate for a domain where wait costs were non-negligible, e.g., it would need to be
modi�ed in many multi-agent settings.

6.2 Other Approaches to AA

Several di�erent approaches have been taken to the core problem of whether and when to
transfer decision-making control. For example, Hexmoor examines how much time the agent
has to do AA reasoning (Hexmoor, 2000). Similarly, in the Dynamic Adaptive Autonomy
framework, a group of agents allocates votes amongst themselves, hence de�ning the amount
of inuence each agent has over a decision and thus, by their de�nition, the autonomy of
the agent with respect to the decision (Barber, Martin, & Mckay, 2000b). For the related
application of meeting scheduling Cesta, Collia, and D'Aloisi (1998) have taken the approach
of providing powerful tools for users to constrain and monitor the behavior of their proxy
agents, but the agents do not explicitly reason about relinquishing control to the user.
While at least some of this work is done in a multiagent context, the possibility of multiple
transfers of control is not considered.

Complementing our work, other researchers have focused on issues of architectures for
AA. For instance, an AA interface to the 3T architecture (Bonasso, Firby, Gat, Kortenkamp,

7. We consider choosing not to act an autonomous decision, hence categorize it in the same way as au-

tonomous action

214

Towards Adjustable Autonomy for the Real World

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

E
U

Probability User has Goal

Horvitz’s EU Calculations with Wait Cost

(a)

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

E
U

w

Horvitz’s EU Calculations with Wait Cost

(b)

Figure 17: EU of di�erent agent options. The solid (darkest) line shows the EU taking
an autonomous action, the dashed (medium dark) line shows the EU of au-
tonomously deciding not to act and the dotted line shows the EU of transferring
control to the user. (a) Plotted against the probability of user having goal, no
wait cost. (b) plotted against wait cost, �xed probability of user having goal.

Miller, & Slack, 1997) has been implemented to solve human-machine interaction problems
experienced in a number of NASA projects (Brann, Thurman, & Mitchell, 1996). The
experiences showed that interaction with the system was required all the way from the
deliberative layer through to detailed control of actuators. The AA controls at all layers
are encapsulated in what is referred to as the 3T's fourth layer { the interaction layer

215

Scerri, Pynadath & Tambe

(Schreckenghost, 1999). A similar area where AA technology is required is for safety-critical
intelligent software, such as for controlling nuclear power plants and oil re�neries (Musliner
& Krebsbach, 1999). That work has resulted in a system called AEGIS (Abnormal Event
Guidance and Information System) that combines human and agent capabilities for rapid
reaction to emergencies in a petro-chemical re�ning plant. AEGIS features a shared task

representation that both the users and the intelligent system can work with (Goldman,
Guerlain, Miller, & Musliner, 1997). A key hypothesis of the work is that the model needs
to have multiple levels of abstraction so that the user can interact at the level they see �t.
Interesting work by Fong, Thorpe, and Baur (2002) has extended the idea of tele-operated
robotics by re-de�ning the relationship between the robot and user as a collaborative one,
rather than the traditional master-slave con�guration. In particular, the robot treats the
human as a resource that can perform perceptual or cognitive functions that the robot
determines it cannot adequately perform. However, as yet the work has not looked at the
possibility that the user is not available to provide input when required, which would require
the robot perform more complex transfer-of-control reasoning.

While most previous work in AA has ignored complex strategies for AA, there is work
in other research �elds that is potentially relevant. For example, the research issues ad-
dressed by �elds such as mixed-initiative decision-making (Collins, Bilot, Gini, & Mobasher,
2000b), anytime algorithms (Zilberstein, 1996), multi-processor scheduling (Stankovic, Ra-
mamritham, & Cheng, 1985), meta-reasoning (Russell & Wefald, 1989), game theory (Fu-
denberg & Tirole, 1991), and contingency plans (Draper, Hanks, & Weld, 1994; Peot &
Smith, 1992) all have, at least super�cial, similarities with the AA problem. However, it
turns out that the core assumptions and focus of these other research areas are di�erent
enough that the algorithms developed in these related �elds are not directly applicable to
the AA problem.

In mixed-initiative decision making a human user is assumed to be continually available
(Collins et al., 2000b; Ferguson & Allen, 1998), negating any need for reasoning about the
likelihood of response. Furthermore, there is often little or no time pressure or coordination
constraints. Thus, while the basic problem of transferring control between a human and
agent is common to both mixed-initiative decision making and AA, the assumptions are
quite di�erent leading to distinct solutions. Likewise, other related research �elds make
distinctly di�erent assumptions which lead to distinctly di�erent solutions. For instance,
contingency planning (Draper et al., 1994; Peot & Smith, 1992) deals with the problem of
creating plans to deal with critical developments in the environment. Strategies are related
to contingency planning in that they are plans to deal with the speci�c contingency of an
entity not making a decision in a manner that maintains coordination. However, in con-
tingency planning, the key diÆculty is in creating the plans. In contrast, in AA, creating
strategies is straightforward and the key diÆculty is choosing between those strategies. Our
contribution is in recognizing the need for strategies in addressing the AA problem, instan-
tiating such strategies via MDPs, and the development of a general, domain-independent
reward function that leads to an MDP choosing the optimal strategy for a particular situ-
ation.

Similarly, another related research area is meta-reasoning (Russell & Wefald, 1989).
Meta-reasoning work looks at online reasoning about computation. A type of meta-reasoning,
most closely related to AA, chooses between sequences of computations with di�erent ex-

216

Towards Adjustable Autonomy for the Real World

pected quality and running time, subject to the constraint that choosing the highest-quality
sequence of computations is not possible (because it takes too long) (Russell & Wefald,
1989). The idea is to treat computations as actions and \meta-reason" about the EU of
doing certain combinations of computation and (base-level) actions. The output of meta-
reasoning is a sequence of computations that are executed in sequence. AA parallels meta-
reasoning if we consider reasoning about transferring control to entities as reasoning about
selecting computations, i.e., we think of entities as computations. However, in AA, the
aim is to have one entity make a high-quality decision, while in meta-reasoning, the aim is
for a sequence of computations to have some high quality. Moreover, the meta-reasoning
assumption that computations are guaranteed to return a timely result if executed, does
not apply in AA. Finally, meta-reasoning looks for a sequence of computations that use a
�xed amount of time, while AA reasons about trading o� extra time for a better decision
(possibly buying time with a D action). Thus, algorithms developed for meta-reasoning are
not applicable to AA.

Another research area with conceptual similarity to AA is the �eld of anytime algo-

rithms (Zilberstein, 1996). An anytime algorithm quickly �nds an initial solution and then
incrementally tries to improve the solution until stopped. The AA problem is similar when
we assume that the agent itself can make an immediate decision, because the problem then
has the property that a solution is always available (an important property of an anytime
algorithm). However, this will not be the case in general, i.e., the agent will not always have
an answer. Furthermore, anytime algorithms do not generally need to deal with multiple,
distributed entities, nor do they have the opportunity to change coordination (i.e., using a
D action).

Multi-processor scheduling looks at assigning tasks to nodes in order to meet certain
time constraints (Stankovic et al., 1985). If entities are thought of as \nodes", then AA
is also about assigning tasks to nodes. In multiprocessor scheduling, the quality of the
computation performed on each of the nodes is usually assumed to be equal, i.e., the nodes
are homogeneous. Thus, reasoning that trades o� quality and time is not required, as it is in
AA. Moreover, deadlines are externally imposed for multi-processor scheduling algorithms,
rather than being exibly reasoned about as in AA. Multi-processor scheduling algorithms
can sometimes deal with a node rejecting a task because it cannot ful�ll the time constraints
or network failures. However, while the AA problem focuses on failure to get a response
as a central issue and load balancing as an auxiliary issue, multi-processor scheduling has
the opposite focus. The di�erence in focus leads to algorithms being developed in the
multiprocessor scheduling community that are not well suited to AA (and vice versa).

7. Conclusions

Adjustable autonomy is critical to the success of real-world agent systems because it allows
an agent to leverage the skills, resources and decision-making abilities of other entities,
both human and agent. Previous work has addressed AA in the context of single-agent
and single-human scenarios, but those solutions do not scale to increasingly complex multi-
agent systems. In particular, previous work used rigid, one-shot transfers of control that
did not consider team costs and, more importantly, did not consider the possibility of costly

217

Scerri, Pynadath & Tambe

miscoordination between team members. Indeed, when we applied a rigid transfer-of-control
approach to a multi-agent context, it failed dramatically.

This article makes three key contributions to enable the application of AA in more
complex multiagent domains. First, the article introduces the notion of a transfer-of-control
strategy. A transfer-of-control strategy consists of a conditional sequence of two types
of actions: (i) actions to transfer decision-making control and (ii) actions to change an
agent's pre-speci�ed coordination constraints with team members, aimed at minimizing
miscoordination costs. Such strategies allow agents to plan sequences of transfer-of-control
actions. Thus, a strategy allows the agent to transfer control to entities best able to make
decisions, buy more time for decisions to be made and still avoid miscoordination | even
if the entity to which control is transferred fails to make the decision. Additionally, we
introduced the idea of changing coordination constraints as a mechanism for giving the
agent more opportunity to provide high-quality decisions, and we showed that such changes
can, in some cases, be an e�ective way of increasing the team's expected utility.

The second contribution of this article is a mathematical model of AA strategies that
allows us to calculate the expected utility of such strategies. The model shows that while
complex strategies are indeed better than single-shot strategies in some situations, they are
not always superior. In fact, our analysis showed that no particular strategy dominates
over the whole space of AA decisions; instead, di�erent strategies are optimal in di�erent
situations.

The third contribution of this article is the operationalization of the notion of transfer-
of-control strategies via Markov Decision Processes and a general reward function that
leads the MDP to �nd optimal strategies in a multiagent context. The general, domain-
independent reward function should allow our approach to potentially be applied to other
multi-agent domains. We implemented, applied, and tested our MDP approach to AA rea-
soning in a real-world application supporting researchers in their daily activities. Daily use
showed the MDP approach to be e�ective at balancing the need to avoid risky autonomous
decisions and the potential for costly miscoordination. Furthermore, detailed experiments
showed that the policies produced by the MDPs have desirable properties, such as transfer-
ring control to the user less often when the probability of getting a timely response is low.
Finally, practical experience with the system revealed that users require the ability to ma-
nipulate the AA reasoning of the agents. To this end, we introduced a constraint language
that allows the user to limit the range of behavior the MDP can exhibit. We presented an
algorithm for processing such constraints, and we showed it to have the desirable property
of reducing the time it takes to �nd optimal policies.

8. Future Work

The model of AA presented in this article is suÆciently rich to model a wide variety of
interesting applications. However, there are some key factors that are not modeled in the
current formulation that are required for some domains. One key issue is to allow an agent
to factor the AA reasoning of other agents into its own AA reasoning. For instance, in
the Elves domain, if one agent is likely to decide to delay a meeting, another agent may
wait until that decision and avoid asking its user. Conversely, if an agent about to take
back control of a decision knows another agent is going to continue waiting for user input,

218

Towards Adjustable Autonomy for the Real World

it might also continue to wait for input. Such interactions will substantially increase the
complexity of the reasoning an agent needs to perform. In this article, we have assumed
that the agent is �nding a transfer-of-control strategy for a single, isolated decision. In
general, there will be many decisions to be made at once and the agent will not be able to
ignore the interactions between those decisions. For example, transferring control of many
decisions to a user, reduces the probability of getting a prompt response to any of them.
Reasoning about these interactions will add further complexity to the required reasoning of
the agent.

Another focus of future work will be generalizing the AA decision making to allow other
types of constraints | not just coordination constraints | to be taken into account. This
would in turn require generalization of the concept of a D action to include other types
of stop-gap actions and may lead to di�erent types of strategies an agent could pursue.
Additionally, transfer-of-control actions could be generalized to allow parts of a decision
to be transferred, e.g., to allow input to be received from a user without transferring total
control to him/her, or allow actions that could be performed collaboratively. Similarly, if
actions were reversible, the agent could make the decision but allow the user to reverse
it. We hope that such generalizations would improve the applicability of our adjustable
autonomy research in more complex domains.

Acknowledgments

This research was supported by DARPA award no. F30602-98-2-0108. The e�ort is being
managed by Air Force Research Labs/Rome site. This article uni�es, generalizes, and signif-
icantly extends approaches described in our previous conference papers (Scerri et al., 2001;
Scerri, Pynadath, & Tambe, 2002; Pynadath & Tambe, 2001). We thank our colleagues,
especially, Craig Knoblock, Yolanda Gil, Hans Chalupsky and Tom Russ for collaborating
on the Electric Elves project. We would also like to thank the JAIR reviewers for their
useful comments.

219

Scerri, Pynadath & Tambe

Appendix A: An Example Instantiation of the Model

In this Appendix, we present a detailed look at one possible instantiation of the AA model.
We use that instantiation to calculate the EU of commonly used strategies and show how
that EU varies with parameters such as the rate of wait cost accrual and the time at which
transfers of control are performed. In this instantiation, the agent, A, has only one entity to
call on for a decision (i.e., the user U), hence E = fA;Ug. For W(t), we use the following
function:

W(t) =

(
! exp!t t � �
! exp!� otherwise

(15)

The exponential wait cost function reects the idea that a big delay is much worse than
a small one. A polynomial or similar function could have also been used but an exponential
was used since it makes the mathematics cleaner. For the probability of response we use:
P>(t) = � exp��t. A Markovian response probability reects an entity that is just as likely
to respond at the next point in time as they were at the previous point. For users mov-
ing around a dynamic environment, this turns out to be a reasonable approximation. The
entities' decision-making quality is constant over time, in particular, EQd

A(t) = � and for
EQd

U (t) = �. Assuming constant decision-making quality will not always be accurate in a
dynamic environment since information available to an entity may change (hence inuencing
their ability to make the decision) however, for decisions involving static facts or preferences
decision-making quality will be relatively constant. The functions are a coarse approxima-
tion of a range of interesting applications, including the E-Elves. Table 7 shows the resulting
instantiated equations for the simple strategies (For convenience we let Æ = ��!). Figures
18(a) and (b) show graphically how the EU of the eA strategy varies along di�erent axes (w
is the parameter to the wait cost function, higher w means faster accruing wait costs and
p is the parameter to the response probability function, higher p means faster response).
Notice how the EU depends on the transfer time (T) as much as it does on � (the user's
decision quality). Figure 18(d) shows the value of a D (as discussed earlier).

Figure 18(c) compares the EU of the eDeA and estrategies. The more complex the
transfer-of-control strategy (i.e., the more transfers of control it makes), the atter the
EU graph when plotted against wait cost (w) and response probability (p) parameters. In
particular, the fall-o� when the wait costs are high and the probability of response low is
not so dramatic for the more complex strategy.

Appendix B: Constraint Propagation Algorithm and its Correctness

In Section 4.4, we examined the need for user-speci�ed constraints in conjunction with
our MDP-based approach to strategies. We must thus extend the standard MDP policy
evaluation algorithms to support the evaluation of strategies while accounting for both the
standard quantitative reward function and these new qualitative constraints. This appendix
provides the novel algorithm that we developed to evaluate strategies while accounting for

220

Towards Adjustable Autonomy for the Real World

0 0.1 0.2 0.3w 0.5
1

1.5

p

3
3.5

4
4.5

5

0 10 20 30 40T 4
8

12
16

20

beta

-5
0
5

10
15
20

(a) (b)

0.1 0.2 0.3w 0.4
0.8

1.2
p

-5

0

5

0.1 0.2 0.3 0.4 0.5w 0.25
0.5

0.75
1

p

-0.04
0

0.04
0.08
0.12
0.16

Value

(c) (d)

Figure 18: Equation 17, i.e., strategy eA plotted against (a) ! (i.e., w, the rate at which
wait costs accrue) and � (i.e., p the likelihood of response) and (b) T (transfer
time)and beta (the user's decision quality). (c) Comparing strategies eDeA and
e(dotted line is e). (d) The value of a D.

221

Scerri, Pynadath & Tambe

EUd
e t = exp��Æ �!(

�

Æ
� 1)�

�!

Æ
+ � (16)

EUd
eAt = ! exp�TÆ(

�

Æ
� 1) + exp��T (�� �)�

�!

Æ
+ � (17)

EUd
eDeAt = (18)

�!
Æ
(exp��Æ � 1) + �(1� exp���) + �! exp�!Dvalue

Æ
(exp�TÆ � exp��Æ) +

(Dcost � �)(exp��T � exp���) + ! exp�!(exp�!Dvalue �1)(exp���� exp��T)�

exp��T (Dcost � �+ !(exp!�� exp!(��Dvalue)+exp!(T�Dvalue)))

Table 7: Instantiated AA EU equations for simple transfer of control strategies.

both. We also present a detailed proof that our algorithm's output is the correct strategy
(i.e., the strategy with the highest expected utility, subject to the user-speci�ed constraints).

In the standard MDP value iteration algorithm, the value of a strategy in a particular
state is a single number, an expected utility U . With the addition of our two types of
constraints, this value is now a tuple hF;N;Ui. F represents a strategy's ability to satisfy
the forbidding constraints; therefore, it is a boolean indicating whether the state is forbidden
or not. N represents a strategy's ability to satisfy the necessary constraints; therefore, it
is the set of requiring constraints that will be satis�ed. As in traditional value iteration,
U is the expected reward. For instance, if the value of a state, V (s) = htrue; fcrsg; 0:3i,
then executing the policy from state s will achieve an expected value of 0.3 and will satisfy
required-state constraint crs. However, it is not guaranteed to satisfy any other required-
state, nor any required-action, constraints. In addition, s is forbidden, so there is a nonzero
probability of violating a forbidden-action or forbidden-state constraint. We do not record
which forbidding constraints the policy violates, since violating any one of them is equally
bad. We do have to record which requiring constraints the policy satis�es, since satisfying
all such constraints is preferable to satisfying only some of them. Therefore, the size of the
value function grows linearly with the number of requiring constraints, but is independent
of the number of forbidding constraints.

Following the form of standard value iteration, we initialize the value function over
states by considering the immediate value of the strategy in the given state, without any
lookahead. More precisely:

V 0(s)

* _
c2Cfs

c(s); fc 2 Crsjc(s)g ; RS(s)

+
(19)

Thus, the state s is forbidden if any forbidden-state constraints immediately apply, and
it satis�es those required-state constraints that immediately apply. As in standard value
iteration, the expected utility is the value of the reward function in the state.

222

Towards Adjustable Autonomy for the Real World

In value iteration, we must de�ne an updated value function V t+1 as a re�nement
of the previous iteration's value function, V t. States become forbidden in V t+1 if they
violate any constraints directly or if any of their successors are forbidden according to V t.
States satisfy requirements if they satisfy them directly or if all of their successors satisfy
the requirement. To simplify the following expressions, we de�ne S0 to be the set of all
successors: fs0 2 SjMa

ss0 > 0g. The following expression provides the precise de�nition of
this iterative step:

V t+1(s) max
a2A

* _
c2Cfs

c(s) _
_

c2Cfa

c(s; a) _
_

V t(s0)=hF 0;N 0;U 0i;s02S0

F 0;

fc 2 Crsjc(s)g [fc 2 Crajc(s; a)g [
\

V t(s0)=hF 0;N 0;U 0i;s02S0

N 0;

RS(s) +R(s; a) +
X

V t(s0)=hF 0;N 0;U 0i;s02S0

Ma
ss0U

0

+
(20)

Just as in standard value iteration, this iterative step speci�es a maximization over all pos-
sible choices of action. However, with our two additional components to represent the value
of the strategy with respect to the constraints, we no longer have an obvious comparison
function to use when evaluating candidate actions. Therefore, we perform the maximization
using the following preference ordering, where x � y means that y is preferable to x:

ht;N;Ui �

f;N 0; U 0�

hF;N;Ui �

F;N 0 � N;U 0�

hF;N;Ui �

F;N;U 0 > U

�
In other words, satisfying a forbidden constraint takes highest priority, satisfying more
requiring constraints is second, and increasing expected value is last. We de�ne the optimal
action, P (s), as the action, a, for which the �nal V (s) expression above is maximized.

Despite the various set operations in Equation 20, the time complexity of this iteration
step exceeds that of standard value iteration by only a linear factor, namely the number
of constraints, jCfsj + jCfaj + jCrsj + jCraj. The eÆciency derives from the fact that the
constraints are satis�ed/violated independently of each other. The determination of whether
a single constraint is satis�ed/violated requires no more time than that of standard value
iteration, hence the overall linear increase in time complexity.

Because expected value has the lowest priority, we can separate the iterative step of
Equation 20 into two phases: constraint propagation and value iteration. During the
constraint-propagation phase, we compute only the �rst two components of our value func-
tion, hF;N; �i. The value-iteration phase computes the third component, h�; �; Ui, as in
standard value iteration. However, we can ignore any state/action pairs that, according
to the results of constraint propagation, violate a forbidding constraint (ht;N; �i) or re-
quiring constraint (hf;N � Crs [Cra; �i). Because of the component-wise independence of
Equation 20, the two-phase algorithm computes an identical value function as the original,
single-phase version (over state/action pairs that satisfy all constraints).

In the rest of this Appendix we provide a proof of the correctness of the modi�ed value
iteration policy. Given a policy, P , constructed according to the above algorithm, we must

223

Scerri, Pynadath & Tambe

show that an agent following P will obey the constraints speci�ed by the user. If the agent
begins in some state, s 2 S, we must prove that it will satisfy all of its constraints if and only
if V (s) = hf;Cra [Crs; Ui. We prove the results for forbidding and requiring constraints
separately.

Theorem 1 An agent following policy, P , with value function, V , generated as in Sec-

tion 4.4, from any state s 2 S will violate a forbidding constraint with probability zero if

and only if V (s) = hf;N;Ui (for some U and N).

Proof: We prove the theorem by induction over subspaces of the states, classi�ed by
how \close" they are to violating a forbidding constraint. More precisely, we partition the
state space, S, into subsets, Sk, de�ned to contain all states that can violate a forbidding
constraint after a minimum of k state transitions. In other words, S0 contains those states
that violate a forbidding constraint directly; S1 contains those states that do not violate
any forbidding constraints themselves, but have a successor state (following the transition
probability function, P) that does (i.e., a successor state in S0); S2 contains those states
that do not violate any forbidding constraints, nor have any successors that do, but who
have at least one successor state that has a successor state that does (i.e., a successor state
in S1); etc. There are at most jSj nonempty subsets in this mutually exclusive sequence. To
make this partition exhaustive, the special subset, S1, contains all states from which the
agent will never violate a forbidding constraint by following P . We �rst show, by induction
over k, that 8s 2 Sk (0 � k � jSj), V (s) = ht;N;Ui, as required by the theorem.

Basis step (S0): By de�nition, the agent will violate a forbidding constraint in s 2 S0.
Therefore, either 9c 2 Cfs such that c(s) = t or 9c 2 Cfa such that c(s; P (s)) = t, so we
know, from Equation 20, V (s) = ht;N;Ui.

Inductive step (Sk; 1 � k � jSj): Assume, as the induction hypothesis, that 8s0 2
Sk�1, V (s

0) = ht;N 0; U 0i. By the de�nition of Sk, each state, s 2 Sk, has at least one
successor state, s0 2 Sk�1. Then, according to Equation 20, V (s) = ht;N;Ui, because the
disjunction over S0 must include s0, for which F 0 = t.

Therefore, by induction, we know that for all s 2 Sk (0 � k � jSj), V (s) = ht;N;Ui.
We now show that 8s 2 S1, V (s) = hf;N;Ui. We prove, by induction over t, that, for any
state, s 2 S1, V

t(s) = hf;N;Ui.
Basis step (V 0): By de�nition, if s 2 S1, there cannot exist any c 2 Cfs such that

c(s) = t. Then, from Equation 19, V 0(s) =

f;N0; U0

�
.

Inductive step (V t; t > 0): Assume, as the inductive hypothesis, that, for any s0 2 S1,
V t�1(s0) = hf;N 0; U 0i. We know that V t(s) =

f;N t; U t

�
if and only if all three disjunctions

in Equation 20 are false. The �rst is false, as described in the basis step. The second term
is similarly false, since, by the de�nition of S1, there cannot exist any c 2 Cfa such that
c(s; P (s)) = t. In evaluating the third term, we �rst note that S0 � S1. In other words,
all of the successor states of s are also in S1 (if successor s0 2 Sk for some �nite k, then
s 2 Sk+1). Since all of the successors are in S1, we know, by the inductive hypothesis, that
the disjunction over V t�1 in all these successors is false. Therefore, all three disjunctive
terms in Equation 20 are false, so V t(s) =

f;N t; U t

�
.

Therefore, by induction, we know that for all s 2 S1, V (s) = hf;N;Ui. By the de�nition
of the state partition, these two results prove the theorem as required. 2

224

Towards Adjustable Autonomy for the Real World

Theorem 2 An agent following policy, P , with value function, V , generated as described
in Section 4.4, from any state s 2 S will satisfy each and every requiring constraint with

probability one if and only if V (s) = hF;Cra [Crs; Ui (for some U and F).

Proof Sketch: The proof parallels that of Theorem 1, but with a state partition, Sk,
where k corresponds to the maximum number of transitions before satisfying a requiring
constraint. However, here, states in S1 are those that violate the constraint, rather than
satisfy it. Some cycles in the state space can prevent a guarantee of satisfying a requiring
constraint within any �xed number of transitions, although the probability of satisfaction
in the limit may be 1. In our current constraint semantics, we have decided that such a
situation fails to satisfy the constraint, and our algorithm behaves accordingly. Such cycles
have no e�ect on the handling of forbidding constraints, where, as we saw for Theorem 1,
we need consider only the minimum-length trajectory. 2

The proofs of the two theorems operate independently, so the policy-speci�ed action will
satisfy all constraints, if such an action exists. The precedence of forbidding constraints
over requiring ones has no e�ect on the optimal action in such states. However, if there
are conicting forbidding and requiring constraints in a state, then the preference ordering
causes the agent to choose a policy that satis�es the forbidding constraint and violates
a requiring constraint. The agent can make the opposite choice if we simply change the
preference ordering from Section 4.4. Regardless of the choice, from Theorems 1 and 2,
the agent can use the value function, V , to identify the existence of any such violation and
notify the user of the violation and possible constraint conict.

References

Barber, K., Goel, A., & Martin, C. (2000a). Dynamic adaptive autonomy in multi-agent
systems. Journal of Experimental and Theoretical Arti�cial Intelligence, 12 (2), 129{
148.

Barber, K. S., Martin, C., & Mckay, R. (2000b). A communication protocol supporting
dynamic autonomy agreements. In Proceedings of PRICAI 2000 Workshop on Teams

with Adjustable Autonomy, pp. 1{10, Melbourne, Australia.

Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D., & Slack, M. (1997). Expe-
riences with an architecture for intelligent reactive agents. Journal of Experimental

and Theorectical Arti�cial Intelligence, 9 (1), 237{256.

Brann, D., Thurman, D., & Mitchell, C. (1996). Human interaction with lights-out automa-
tion: A �eld study. In Proceedings of the 1996 Symposium on Human Interaction and

Complex Systems, pp. 276{283, Dayton, USA.

Cesta, A., Collia, M., & D'Aloisi, D. (1998). Tailorable interactive agents for scheduling
meetings. In Lecture Notes in AI, Proceedings of AIMSA'98, No. 1480, pp. 153{166.
Springer Verlag.

Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J., Pynadath, D., Russ, T., & Tambe,
M. (2001). Electric Elves: Applying agent technology to support human organizations.
In International Conference on Innovative Applications of AI, pp. 51{58.

225

Scerri, Pynadath & Tambe

Collins, J., Bilot, C., Gini, M., & Mobasher, B. (2000a). Mixed-initiative decision-support
in agent-based automated contracting. In Proceedings of the International Conference

on Autonomous Agents (Agents'2000).

Collins, J., Bilot, C., Gini, M., & Mobasher, B. (2000b). Mixed-initiative decision support
in agent-based automated contracting. In Proceedings of the International Conference
on Autonomous Agents (Agents'2000), pp. 247{254.

Dorais, G., Bonasso, R., Kortenkamp, D., Pell, B., & Schreckenghost, D. (1998). Adjustable
autonomy for human-centered autonomous systems on mars. In Proceedings of the

First International Conference of the Mars Society, pp. 397{420.

Draper, D., Hanks, S., & Weld, D. (1994). Probabilistic planning with information gathering
and contingent execution. In Hammond, K. (Ed.), Proc. Second International Con-

ference on Arti�cial Intelligence Planning Systems, pp. 31{37, University of Chicago,
Illinois. AAAI Press.

Ferguson, G., Allen, J., & Miller, B. (1996). TRAINS-95 : Towards a mixed-initiative
planning assistant. In Proceedings of the Third Conference on Arti�cial Intelligence

Planning Systems, pp. 70{77.

Ferguson, G., & Allen, J. (1998). TRIPS : An intelligent integrated problem-solving assis-
tant. In Proceedings of Fifteenth National Conference on Arti�cial Intelligence(AAAI-

98), pp. 567{573, Madison, WI, USA.

Fong, T., Thorpe, C., & Baur, C. (2002). Robot as partner: Vehicle teleoperation with col-
laborative control. In Workshop on Multi-Robot Systems, Naval Research Laboratory,
Washington, D.C.

Fudenberg, D., & Tirole, J. (1991). Game Theory. The MIT Press, Cambridge, Mas-
sachusetts.

Goldman, R., Guerlain, S., Miller, C., & Musliner, D. (1997). Integrated task representa-
tion for indirect interaction. In Working Notes of the AAAI Spring Symposium on

Computational Models for Mixed-Initiative Interaction.

Goodrich, M., Olsen, D., Crandall, J., & Palmer, T. (2001). Experiments in adjustable
autonomy. In Hexmoor, H., Castelfranchi, C., Falcone, R., & Cox, M. (Eds.), Pro-
ceedings of IJCAI Workshop on Autonomy, Delegation and Control: Interacting with

Intelligent Agents.

Gunderson, J., & Martin, W. (1999). E�ects of uncertainty on variable autonomy in main-
tainance robots. In Agents'99 Workshop on Autonomy Control Software, pp. 26{34.

Hexmoor, H. (2000). A cognitive model of situated autonomy. In Proceedings of PRICAI-

2000, Workshop on Teams with Adjustable Autonomy, pp. 11{20, Melbourne, Aus-
tralia.

Hexmoor, H., & Kortenkamp, D. (2000). Introduction to autonomy control software. Journal
of Experiemental and Theoretical Arti�cial Intelligence, 12 (2), 123{128.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings of ACM

SIGCHI Conference on Human Factors in Computing Systems (CHI'99), pp. 159{166,
Pittsburgh, PA.

226

Towards Adjustable Autonomy for the Real World

Horvitz, E., Jacobs, A., & Hovel, D. (1999). Attention-sensitive alerting. In Proceedings of
Conference on Uncertainty and Arti�cial Intelligence (UAI'99), pp. 305{313, Stock-
holm, Sweden.

Lesser, V., Atighetchi, M., Benyo, B., Horling, B., Raja, A., Vincent, R., Wagner, T., Xuan,
P., & Zhang, S. (1999). The UMASS intelligent home project. In Proceedings of the

Third Annual Conference on Autonomous Agents, pp. 291{298, Seattle, USA.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994). Experience
with a learning personal assistant. Communications of the ACM, 37 (7), 81{91.

Mulsiner, D., & Pell, B. (1999). Call for papers: AAAI spring symposium on adjustable
autonomy. www.aaai.org.

Musliner, D., & Krebsbach, K. (1999). Adjustable autonomy in procedural control for
re�neries. In AAAI Spring Symposium on Agents with Adjustable Autonomy, pp.
81{87, Stanford, California.

Peot, M. A., & Smith, D. E. (1992). Conditional nonlinear planning. In Hendler, J. (Ed.),
Proc. First International Conference on Arti�cial Intelligence Planning Systems, pp.
189{197, College Park, Maryland. Morgan Kaufmann.

Puterman, M. L. (1994). Markov Decision Processes. John Wiley & Sons.

Pynadath, D., Tambe, M., Arens, Y., Chalupsky, H., Gil, Y., Knoblock, C., Lee, H., Lerman,
K., Oh, J., Kamachandran, S., Rosenbloom, P., & Russ, T. (2000). Electric-elves:
Immersing and agent organization in a human organization. In Proceedings of the

AAAI Fall Symposium on Socially Intelligent Agents { The Human in the Loop.

Pynadath, D., & Tambe, M. (2001). Revisiting Asimov's �rst law: A response to the call to
arms. In Intelligent Agents VIII Proceedings of the International workshop on Agents,

Theories, Architectures and Languages (ATAL'01).

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann, San
Mateo, CA.

Russell, S. J., & Wefald, E. (1989). Principles of metareasoning. In Brachman, R. J.,
Levesque, H. J., & Reiter, R. (Eds.), KR'89: Principles of Knowledge Representation

and Reasoning, pp. 400{411. Morgan Kaufmann, San Mateo, California.

Scerri, P., Pynadath, D., & Tambe, M. (2001). Adjustable autonomy in real-world multi-
agent environments. In Proceedings of the Fifth International Conference on Au-

tonomous Agents (Agents'01), pp. 300{307.

Scerri, P., Pynadath, D., & Tambe, M. (2002). Why the elf acted autonomously: Towards
a theory of adjustable autonomy. In First International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS'02).

Schreckenghost, D. (1999). Human interaction with control software supporting adjustable
autonomy. In Musliner, D., & Pell, B. (Eds.), Agents with Adjustable Autonomy,
AAAI 1999 Spring Symposium Series, pp. 116{119.

Stankovic, J., Ramamritham, K., & Cheng, S. (1985). Evaluation of a exible task schedul-
ing algorithm for distributed hard real-time system. IEEE Transactions on Comput-

ers, 34 (12), 1130{1143.

227

Scerri, Pynadath & Tambe

Tambe, M. (1997). Towards exible teamwork. Journal of Arti�cial Intelligence Research
(JAIR), 7, 83{124.

Tambe, M., Pynadath, D. V., Chauvat, N., Das, A., & Kaminka, G. A. (2000). Adaptive
agent integration architectures for heterogeneous team members. In Proceedings of

the International Conference on MultiAgent Systems, pp. 301{308.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17 (3),
73{83.

228

