Suppose \(f: \mathbb{R}^{n+1} \to \mathbb{R} \) and \(L \) is a curve or surface in \(\mathbb{R}^n \). Say we want to maximize (or minimize) \(f \) but only allowing points of \(L \) as inputs. I.e., we are wondering which points \(\mathbf{x} \in L \) give the largest value of \(f(\mathbf{x}) \).

Suppose \(\mathbf{x}_0 \in L \) is such a maximizing input. Then \(\nabla f(\mathbf{x}_0) \perp L \) at \(\mathbf{x}_0 \).

Theorem: \(\nabla f(\mathbf{x}_0) \perp L \) at \(\mathbf{x}_0 \)

(Note: This is not the theorem that says \(\nabla f(\mathbf{x}_0) \) is perpendicular to the level set of \(f \) at \(\mathbf{x}_0 \), because \(L \) is not a level set of \(f \) here! At most points \(\mathbf{x}_1 \in L, \nabla f(\mathbf{x}_1) \) will not be \(\perp \) to \(L \).)
Why is this true? If \(L \) makes an angle of \(\Theta < \pi/2 \) with \(\nabla f(x_0) \) at \(\bar{x}_0 \), then moving the input along \(L \) instantaneously in the direction of the tangent vector \(\bar{\mathbf{u}} \) (see picture) will change \(f \) at a rate of
\[
\nabla \bar{u} f(x_0) = \nabla f(x_0) \cdot \bar{u}
\]
\[
= |\nabla f(x_0)| \cdot |\bar{u}| \cdot \cos \Theta
\]
positive since \(\Theta < \pi/2 \).

This means \(f(x_0) \) can be increased slightly by moving \(\bar{x}_0 \) (inside \(L \)) in the (approximate) direction of \(\bar{u} \), so it is not yet maximized.

Now, if \(L \) is defined by implicit equations, often called "constraints," then we can find \(\bar{x}_0 \) by a method which depends on the number of constraints. For us, one or two.
1. If the set L is defined by one implicit equation, say $g = c^2$, (so L is a surface in \mathbb{R}^3 or a curve in \mathbb{R}^2), then we already know that $\nabla g(x_0)$ gives the normal direction to L at x_0 (here we assume $\nabla g(x_0) \neq 0$), so $\nabla f(x_0) \parallel \nabla g(x_0)$, i.e.

$$\nabla f(x_0) = \lambda \nabla g(x_0)$$

Writing out the components of this equation, and remembering also that $g(x_0) = c$, we have n equations in n variables:

\[
\begin{align*}
g &= c \\
F_x &= \lambda g_x \\
F_y &= \lambda g_y \\
F_z &= \lambda g_z \\
\text{if in } \mathbb{R}^3 \wedge (F_z = \lambda g_z)
\end{align*}
\]

The scalar λ is called a "Lagrange multiplier," and solving this system for x_0, y_0, z_0 is called "the method of Lagrange multipliers." The inputs x_0 you find ("Lagrange" inputs?) are like critical inputs: if you check them all, you will find the "true" $x_0 \in L$ which maximizes $F(x_0)$.

<-- Please read the text for examples of how to solve these equations... they can be quite tricky!
(2) If \(L \) is defined by two implicit equations, \(\{ g = c_1, \quad h = c_2 \} \), for example a curve in \(\mathbb{R}^3 \), then we know two normal vectors to \(L \) at \(\vec{x}_0 \) : \(\nabla g(\vec{x}_0) \) and \(\nabla h(\vec{x}_0) \). (here we assume \(\nabla g(\vec{x}_0) \) and \(\nabla h(\vec{x}_0) \) are not 0 and not parallel to each other). Since \(\nabla f, \nabla g, \) and \(\nabla h \) (at \(\vec{x}_0 \)) all lie in the plane of normal vectors to \(L \) at \(\vec{x}_0 \), we can express \(\nabla f \) as a "linear combination" of \(\nabla g \) and \(\nabla h \). there \(\phi \) \(\begin{align*} \nabla f &= \lambda \nabla g + \mu \nabla h \quad \text{at } \vec{x}_0 \\
abla g &= c_1 \\
abla h &= c_2 \\
x &= \lambda g_x + \mu h_x \\
y &= \lambda g_y + \mu h_y \\
z &= \lambda g_z + \mu h_z \end{align*} \) Now we have \(n+2 \) variables in \(n+2 \) unknowns, we can solve to find "Lagrange" inputs, \(\vec{x}_0 \), and check them to find the maximum.
Of course, if we can parametrize the curve \(L \) nicely, we can solve a one-variable calculus problem instead of a system of \(S \) equations, which is probably much easier. But parametrization is often extremely difficult or impossible in practice, so then Lagrange multipliers come to the rescue.
How two vectors "Span" a plane (optional)

Say \(\vec{u} \) and \(\vec{v} \) are non-zero, non-parallel vectors in \(\mathbb{R}^3 \) (or \(\mathbb{R}^n \)). Slide them into position at the origin, so they determine a plane:

Now imagine that this sheet of paper is that plane, and imagine a third vector \(\vec{w} \) in the same plane:

If we subtract (\(\pm \)) multiples \(\mu \vec{v} \) of the vector \(\vec{v} \) (\(\mu \) being a scalar), the tip of the resulting vector \(\vec{w} - \mu \vec{v} \) moves along the dotted line as \(\mu \) changes. For some \(\mu \), \(\vec{w} - \mu \vec{v} \) will line up with \(\vec{u} \), say \(\vec{w} - \mu \vec{v} = \lambda \vec{u} \) for some scalar \(\lambda \). Rearranging gives:

\[
\vec{w} = \lambda \vec{u} + \mu \vec{v}
\]