Stalk-local detection of irreducibility

Andrew Critch, UC Berkeley September 28, 2008

I think this is one more "stalk-local detection" result that people should learn right away:

Theorem. A locally Noetherian scheme X is irreducible if and only if it is connected and stalk-locally irreducible. In particular, a Noetherian ring A is a domain if and only if it has no idempotents (i.e. it is not a direct product) and $A_{\mathfrak{p}}$ is a domain for every prime \mathfrak{p} .

Motivation. A topological space is irreducible if and only if it is connected and locally irreducible. Thus, irreducibility of a connected space can be detected locally. For example, reducibility of the variety xy = 0 in the affine plane can be detected in any neighborhood of the origin. It turns out that in the case of a connected locally Noetherian scheme, it can even be detected stalk-locally.

The following lemma will reduce the problem to the affine case:

Lemma. Any locally Noetherian scheme X is affine-base-locally connected, i.e. every point has a neighborhood base consisting of affine connected opens.

Proof. Say $x \in X$ is contained in an open affine Spec A, so $A = A_0$ is a Noetherian ring. If Spec A_{i-1} is not connected, write $A_{i-1} = A_i \times B_i$ (a direct product) where Spec A_i contains x. By Noetherianity, the ascending chain of ideals $C_i = B_1 \times \ldots \times B_i$ must stabilize, meaning eventually Spec A_i is a connected affine open neighborhood of x (contained in Spec A if this is of interest).

The affine case proven below will now be enough to prove the main result as follows: about each point of X, choose a connected neighborhood Spec A

with A Noetherian, and stalk-local irreducibility will imply that Spec A is irreducible. Hence X is connected and locally irreducible, therefore irreducible by general topology.

So! To the affine case:

Proposition. Suppose that A is a Noetherian ring. If Spec A is connected and stalk-locally irreducible, then it is irreducible.

Proof. Let N be the nilradical of A. Suppose $a, b \in A$ and ab is nilpotent, which is to say that $ab \equiv 0 \pmod{N}$.

Stalk-local irreducibility of Spec A means precisely that for every prime p of A, the nilradical of A_p is prime. Thus, in each A_p either a or b is nilpotent. That is, for each p there is some $s \in A \setminus p$ and some n such that $sa^n = 0$ or $sb^n = 0$ in A, so that either sa or sb is nilpotent. Therefore the ideal (N:a) + (N:b) has elements outside every prime (the s's), so it is the unit ideal and we can write x + y = 1 with $xa \equiv 0$ and $yb \equiv 0 \pmod{N}$. We can replace a by $a_1 = y$, and note that $a = (x + a_1)a \equiv a_1a \pmod{N}$, so the ideal $(a_1) + N$ contains the ideal (a) + N. We can continue inductively to get an ascending chain of ideals

$$(a_1) + N \subseteq (a_2) + N \subseteq (a_3) + N \subseteq \dots$$

with the property that $a_ib \equiv 0$ and $a_{i+1}a_i \equiv a_i$. This chain will stabilize, so eventually we get $a_{n+1} \equiv a_n r$ for some $r \in A$, whence $a_{n+1}^2 \equiv a_{n+1}a_n r \equiv a_n r \equiv a_{n+1}$. But connectedness of Spec A is precisely the condition that A/N has no idempotents except 1 and 0, so either $a_{n+1} \equiv 1$ in which case $b \equiv 0$, or $a_{n+1} \equiv 0$ in which case $a \equiv 0$. Thus, N must be prime, i.e. Spec A is irreducible.

As an application¹ of the above, we can remove the "integral" hypothesis from Hartshorne's *Algebraic Geometry* Theorem II.6.11:

Theorem. If a scheme X is Noetherian, separated, and locally factorial, then $Weil(X) \simeq Cart(X)$, i.e. its Weil divisor group is isomorphic to its Cartier divisor group.

Proof. Since X is Noetherian, by the lemma we know it is locally connected, so we can break it into finitely many (open) connected components

¹added March 23, 2009

 X_1,\ldots,X_n . The stalks of X_i are UFDs, hence irreducible, so X_i is irreducible by stalk-local detection, and reduced by the same argument. Hence, each X_i is a domain (i.e. an "integral" scheme) where we can apply AG II.6.11. Then we have $\mathrm{Weil}(X) \simeq \prod_i \mathrm{Weil}(X_i) \simeq \prod_i \mathrm{Cart}(X_i) \simeq \mathrm{Cart}(X)$, as required. \square