i1 : R=QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : M=tensorModule(R,{4,3,2}) 24 o2 = R {4x3x2} o2 : Free R-TensorModule of order 3, dimensions {4, 3, 2} |
i3 : M_(2,0,1) -- same as M_13 +------+------+------+ o3 = |{0, 0}|{0, 0}|{0, 0}| +------+------+------+ |{0, 0}|{0, 0}|{0, 0}| +------+------+------+ |{0, 1}|{0, 0}|{0, 0}| +------+------+------+ |{0, 0}|{0, 0}|{0, 0}| +------+------+------+ 24 o3 : R {4x3x2} |
i4 : M.factors 4 3 2 o4 = {R , R , R } o4 : List |
i5 : M.dimensions o5 = {4, 3, 2} o5 : List |
i6 : I = ideal(x*y) o6 = ideal(x*y) o6 : Ideal of R |
i7 : M=R^4/I o7 = cokernel | xy 0 0 0 | | 0 xy 0 0 | | 0 0 xy 0 | | 0 0 0 xy | 4 o7 : R-module, quotient of R |
i8 : N=tensorModule(M,{2,2}) o8 = cokernel | xy 0 0 0 | | 0 xy 0 0 | | 0 0 xy 0 | | 0 0 0 xy | 4 o8 : R-TensorModule of order 2, dimensions {2, 2}, quotient of R |
i9 : N_(0,0) +-+-+ o9 = |1|0| +-+-+ |0|0| +-+-+ o9 : cokernel | xy 0 0 0 | | 0 xy 0 0 | | 0 0 xy 0 | | 0 0 0 xy | |
i10 : oo*x*y==0_N o10 = true |