i1 : G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}} o1 = Digraph{a => set {b, c}} b => set {c, d} c => set {} d => set {} o1 : Digraph |
i2 : R = gaussianRing G o2 = R o2 : PolynomialRing |
i3 : trekIdeal(R,G) o3 = ideal (s s - s s , s s - s s , s s - s s ) b,c b,d b,b c,d a,d b,c a,b c,d a,d b,b a,b b,d o3 : Ideal of R |
For mixed graphs, the ideal corresponding to a trek separation statement A,B,CA,CB (where A,B,CA,CB are disjoint lists of vertices of G) is generated by the r+1 x r+1 minors of the submatrix of the covariance matrix M = (s(i,j)), whose rows are in A, and whose columns are in B, and where r = #CA+#CB.
i4 : G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}}) o4 = MixedGraph{Bigraph => Bigraph{a => set {d}} } d => set {a} Digraph => Digraph{b => set {c, d}} c => set {d} d => set {} Graph => Graph{} o4 : MixedGraph |
i5 : R = gaussianRing G o5 = R o5 : PolynomialRing |
i6 : T = trekIdeal(R,G) o6 = ideal (s , s , s s - s s , - s s + s s , s s a,c a,b a,c b,b a,b b,c a,c b,b a,b b,c a,c b,c ------------------------------------------------------------------------ - s s , s s - s s ) a,b c,c a,c b,d a,b c,d o6 : Ideal of R |
i7 : ideal gens gb T o7 = ideal (s , s ) a,c a,b o7 : Ideal of R |