next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
GraphicalModels :: markovMatrices

markovMatrices -- The matrices whose minors form the ideal associated to the list of independence statements of the graph.

Synopsis

Description

List of matrices encoding the independent statements of the Digraph G. The 2x2 minors of each matrix generate the ideal of independence constraints of the Digraph G. the This method is used in markovIdeals. But it is exported to be able to see constraints not as polynomials but as minors of matrices in this list.
i1 : G = digraph { {1, {2,3}}, {2, {4}}, {3, {4}} }

o1 = Digraph{1 => set {2, 3}}
             2 => set {4}
             3 => set {4}
             4 => set {}

o1 : Digraph
i2 : S = localMarkov G

o2 = {{{2}, {3}, {1}}, {{1}, {4}, {2, 3}}}

o2 : List
i3 : R = markovRing (4:2)

o3 = R

o3 : PolynomialRing
i4 : L = markovMatrices (R,G,S)

o4 = {| p_(1,1,1,1)+p_(1,1,1,2) p_(1,1,2,1)+p_(1,1,2,2) |, |
      | p_(1,2,1,1)+p_(1,2,1,2) p_(1,2,2,1)+p_(1,2,2,2) |  |
     ------------------------------------------------------------------------
     p_(2,1,1,1)+p_(2,1,1,2) p_(2,1,2,1)+p_(2,1,2,2) |, | p_(1,1,1,1)
     p_(2,2,1,1)+p_(2,2,1,2) p_(2,2,2,1)+p_(2,2,2,2) |  | p_(2,1,1,1)
     ------------------------------------------------------------------------
     p_(1,1,1,2) |, | p_(1,1,2,1) p_(1,1,2,2) |, | p_(1,2,1,1) p_(1,2,1,2) |,
     p_(2,1,1,2) |  | p_(2,1,2,1) p_(2,1,2,2) |  | p_(2,2,1,1) p_(2,2,1,2) | 
     ------------------------------------------------------------------------
     | p_(1,2,2,1) p_(1,2,2,2) |}
     | p_(2,2,2,1) p_(2,2,2,2) |

o4 : List

See also

Ways to use markovMatrices :