next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
GraphicalModels :: marginMap

marginMap -- Generates a linear map on joint probabilities for discrete variables that replaces marginals for indeterminates.

Synopsis

Description

Returns the ring map F : R -> R such that F pu1,u2,..., +,...,un = pu1,u2,...,1,...,un and F pu1,u2,..., j,...,un = pu1,u2,..., j,...,un , for j≥2 .
i1 : marginMap(1,markovRing(3,2))

o1 = map(QQ[p   , p   , p   , p   , p   , p   ],QQ[p   , p   , p   , p   , p   , p   ],{p    - p    - p   , p    - p    - p   , p   , p   , p   , p   })
             1,1   1,2   2,1   2,2   3,1   3,2      1,1   1,2   2,1   2,2   3,1   3,2    1,1    2,1    3,1   1,2    2,2    3,2   2,1   2,2   3,1   3,2

o1 : RingMap QQ[p   , p   , p   , p   , p   , p   ] <--- QQ[p   , p   , p   , p   , p   , p   ]
                 1,1   1,2   2,1   2,2   3,1   3,2           1,1   1,2   2,1   2,2   3,1   3,2
This linear transformation simplifies ideals and/or polynomials involving pu1,u2,..., +,...,un . In some cases, the resulting ideals are toric ideals as the example at the beginning of the documentation. For more details see the paper "Algebraic Geometry of Bayesian Networks" by Garcia, Stillman, and Sturmfels.

See also

Ways to use marginMap :