If H#p contains a linear equation a*p+b where a is always nonzero, then p is identifiable.
If H#p contains a linear equation a*p+b where a may be zero, then p is generically identifiable.
If H#p contains a polynomial in p of degree d, then p is algebraically d-identifiable.
i1 : G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}}) o1 = MixedGraph{Bigraph => Bigraph{a => set {d}} } d => set {a} Digraph => Digraph{b => set {c, d}} c => set {d} d => set {} Graph => Graph{} o1 : MixedGraph |
i2 : R = gaussianRing G o2 = R o2 : PolynomialRing |
i3 : H = identifyParameters(R,G) o3 = HashTable{l => ideal (s , s , l s - s ) } b,c a,c a,b b,c b,b b,c 2 l => ideal (s , s , l s - l s s + s s - s s ) b,d a,c a,b b,d b,c b,d b,b c,c b,d c,c b,c c,d 2 l => ideal (s , s , l s - l s s - s s + s s ) c,d a,c a,b c,d b,c c,d b,b c,c b,c b,d b,b c,d p => ideal (s , s , p - s ) a,a a,c a,b a,a a,a p => ideal (s , s , p - s ) a,d a,c a,b a,d a,d p => ideal (s , s , p - s ) b,b a,c a,b b,b b,b 2 p => ideal (s , s , p s + s - s s ) c,c a,c a,b c,c b,b b,c b,b c,c 2 2 2 2 p => ideal (s , s , p s - p s s - s s + 2s s s - s s - s s + s s s ) d,d a,c a,b d,d b,c d,d b,b c,c b,d c,c b,c b,d c,d b,b c,d b,c d,d b,b c,c d,d o3 : HashTable |